scholarly journals A Predictive Study of the Redistribution of Some Bread Wheat Genotypes in Response to Climate Change in Egypt

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 113
Author(s):  
Alhosein Hamada ◽  
Mohamed Tharwat Said ◽  
Khaled M. Ibrahim ◽  
Mohamed Saber ◽  
Mohammed Abdelaziz Sayed

Climate change and global warming have become the most significant challenges to the agricultural production worldwide, especially in arid and semiarid areas. The main purpose of plant breeding programs now is to produce a genetically wide range of genotypes that can withstand the adverse effects of climate change. Moreover, farmers have to reallocate their cultivars due to their ability to tolerate unfavorable conditions. During this study, two field experiments and climate analysis based on 150 years of data are conducted to reallocate some genotypes of bread wheat in respect to climate change based on their performance under drought stress conditions. Climatic data indicate that there is an increase in temperature over all Egyptian sites coupled with some changes in rain amount. Among the tested cultivars, cultivar Giza 160 was the perfect one, while cultivar Masr 03 was the weakest one. Susceptibility indices are a good tool for discovering the superior genotypes under unfavorable conditions and, interestingly, some of the cultivars with high performance were among the superior cultivars in more than one of the tested traits in this study. Finally, combining the climatic data and the experimental data, we can conclude that cultivars Giza 160 and Sakha 94 are suitable for growning in zones with harsh environments, such as the eastern desert and southern Egypt, while cultivars Gemmeza 11, Sahel 01, Sakha 98, Sids 12, and Sakha 93 are suitable for growning in zones with good growing conditions, such as the Nile Delta region and northern Egypt.

Author(s):  
Muhammad Babur ◽  
Mukand Singh Babel ◽  
Sangam Shrestha ◽  
Akiyuki Kawasaki ◽  
Nitin Kumar Tripathi

Assessment of extreme events and climate change on reservoir inflow is important for water and power stressed countries. Projected climate is subject to uncertainties related to climate change scenarios and Global Circulation Models (GCMs’). Extreme climatic events will increase with the rise in temperature as mentioned in the AR5 of the IPCC. This paper discusses the consequences of climate change that include extreme events on discharge. Historical climatic and gauging data were collected from different stations within a watershed. The observed flow data was used for calibration and validation of SWAT model. Downscaling was performed on future GCMs’ temperature and precipitation data, and plausible extreme events were generated. Corrected climatic data was applied to project the influence of climate change. Results showed a large uncertainty in discharge using different GCMs’ and different emissions scenarios. The annual tendency of the GCMs’ is bi-vocal: six GCMs’ projected a rise in annual flow, while one GCM projected a decrease in flow. The change in average seasonal flow is more as compared to annual variations. Changes in winter and spring discharge are mostly positive, even with the decrease in precipitation. The changes in flows are generally negative for summer and autumn due to early snowmelt from an increase in temperature. The change in average seasonal flows under RCPs’ 4.5 and 8.5 are projected to vary from -29.1 to 130.7% and -49.4 to 171%, respectively. In the medium range (RCP 4.5) impact scenario, the uncertainty range of average runoff is relatively low. While in the high range (RCP 8.5) impact scenario, this range is significantly larger. RCP 8.5 covered a wide range of uncertainties, while RCP 4.5 covered a short range of possibilities. These outcomes suggest that it is important to consider the influence of climate change on water resources to frame appropriate guidelines for planning and management.


2021 ◽  
pp. 69-76
Author(s):  
Mehari Gebreyesus ◽  
Arzu Rivera Garcia ◽  
Géza Tuba ◽  
Györgyi Kovács ◽  
Lúcia Sinka ◽  
...  

Agricultural production is an important sector for peoples to live, but it is highly affected by climate change. To have a good production we need to understand the climatic parameters which adversely affect production. Hamelmalo, which is located in the semi-arid area of Eritrea, is vulnerable to climate change and this is realised in the total production loss. Nevertheless, there is no concrete reference about the climate of the region due to lack of data for a long time. Changes in precipitation (P), evapotranspiration (ET) and, implicitly, in the climatic water balance (CWB), are imminent effects of climate change. However, changes in the CWB, as a response to changes in P and ET, have not yet been analysed thoroughly enough in many parts of the world, including Eritrea. This study also explores the changes of the CWB in the Hamelmalo region, based on a wide range of climatic data (P, relative air humidity and evaporation pan necessary for computing potential evapotranspiration (PET) with the pan evaporation method) recorded at Hamelmalo from 2015-2019. This analysis shows that the annual cumulative CWB for Hamelmalo is negative in 67% of the years. The dry season without precipitation leads to negative CWB and the change in CWB only starts from the raining or crop season. Based on this recent study, 2015 had the highest PET and lowest P, and this resulted in the lowest CWB in the investigated period. Opposite to this, 2019 had lower PET and highest P, which led to the highest CWB. However, the monthly values of CWB did not correlate with the annual P or ET. On the base of our study, it can be concluded that PET and P were very variable in the investigated years and P was the most influential elements of CWB.


2021 ◽  
Author(s):  
Giannis Lemesios ◽  
Gianna Kitsara ◽  
Konstantinos V. Varotsos ◽  
Basil Psiloglou ◽  
Christos Giannakopoulos

<p>Ιn the framework of two European Projects, the LIFE URBANPROOF and LIFE TERRACESCAPE, a network of 24 meteorological stations has been installed for recording meteorological parameters and climate indices for the monitoring of impacts of climate change on urban and agricultural areas as well as for the assessment of respective adaptation measures.</p><p>Regarding the urban environment, the study aims to estimate the Urban Heat Island (UHI) effect in the Greater Athens’ Municipality of Peristeri, Greece, by analysing data from the meteorological stations installed (since January 2020) in different urban surroundings and investigating relative changes in surface temperatures and perceived thermal discomfort (HUMIDEX) thus identifying hot and cool spots at the local scale. The UHI mapping in the Municipality of Peristeri was designed and implemented in such a way, as to provide accurate information about heat stress conditions across different parts of the city. Fully automated sensors of air temperature and relative humidity were installed at eleven (11) sites throughout the municipality, covering a wide range of urban characteristics, such as densely populated areas, open spaces, municipal parks etc., where local climatic conditions were expected to show a degree of variation.</p><p>As regards the rural environment, the study intends to estimate the anticipated changes of the micro-climate in the Aegean island of Andros, Greece after land-use interventions, which are considering the use of drystone terraces as green infrastructures resilient to climate change impacts. To that end, a network of 13 meteorological stations has been installed in selected rural areas of Andros since June 2018 for monitoring purposes. The thirteen meteorological stations, 12 small autonomous stations and 1 automated, currently operating on Andros Island continue (till now days) to generate baseline (micro-) climatic data, providing basic meteorological parameters such as air temperature and relative humidity. In addition, the valuable information, based on observational data from installed network of the meteorological stations, located either at currently abandoned terrace sites (project plots) or cultivated sites of Andros will be used to provide a solid basis for comparisons with changes projected for the future climate, combined with climatic indices which directly or indirectly affect agriculture in the monitoring areas.</p><p> </p>


2020 ◽  
Author(s):  
Maria Moreno de Castro ◽  
Stephan Kindermann ◽  
Sandro Fiore ◽  
Paola Nassisi ◽  
Guillaume Levavasseur ◽  
...  

<p>Earth System observational and model data volumes are constantly increasing and it can be challenging to discover, download, and analyze data if scientists do not have the required computing and storage resources at hand. This is especially the case for detection and attribution studies in the field of climate change research since we need to perform multi-source and cross-disciplinary comparisons for datasets of high-spatial and large temporal coverage. Researchers and end-users are therefore looking for access to cloud solutions and high performance compute facilities. The Earth System Grid Federation (ESGF, https://esgf.llnl.gov/) maintains a global system of federated data centers that allow access to the largest archive of model climate data world-wide. ESGF portals provide free access to the output of the data contributing to the next assessment report of the Intergovernmental Panel on Climate Change through the Coupled Model Intercomparison Project. In order to support users to directly access to high performance computing facilities to perform analyses such as detection and attribution of climate change and its impacts, the EU Commission funded a new service within the infrastructure of the European Network for Earth System Modelling (ENES, https://portal.enes.org/data/data-metadata-service/analysis-platforms). This new service is designed to reduce data transfer issues, speed up the computational analysis, provide storage, and ensure the resources access and maintenance. Furthermore, the service is free of charge, only requires a lightweight application. We will present a demo on how flexible it is to calculate climate indices from different ESGF datasets covering a wide range of temporal and spatial scales using cdo (Climate Data Operators, https://code.mpimet.mpg.de/projects/cdo/) and Jupyter notebooks running directly on the ENES partners: the DKRZ (Germany), JASMIN (UK), CMCC(Italy), and IPSL (France) high performance computing centers.</p>


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


2012 ◽  
Vol 163 (12) ◽  
pp. 481-492
Author(s):  
Andreas Rigling ◽  
Ché Elkin ◽  
Matthias Dobbertin ◽  
Britta Eilmann ◽  
Arnaud Giuggiola ◽  
...  

Forest and climate change in the inner-Alpine dry region of Visp Over the past decades, observed increases in temperature have been particularly pronounced in mountain regions. If this trend should continue in the 21st Century, frequency and intensity of droughts will increase, and will pose major challenges for forest management. Under current conditions drought-related tree mortality is already an important factor of forest ecosystems in dry inner-Alpine valleys. Here we assess the sensitivity of forest ecosystems to climate change and evaluate alternative forest management strategies in the Visp region. We integrate data from forest monitoring plots, field experiments and dynamic forests models to evaluate how the forest ecosystem services timber production, protection against natural hazards, carbon storage and biodiver-sity will be impacted. Our results suggest that at dry low elevation sites the drought tolerance of native tree species will be exceeded so that in the longer term a transition to more drought-adapted species should be considered. At medium elevations, drought and insect disturbances as by bark beetles are projected to be important for forest development, while at high elevations forests are projected to expand and grow better. All of the ecosystem services that we considered are projected to be impacted by changing forest conditions, with the specific impacts often being elevation-dependent. In the medium term, forest management that aims to increase the resilience of forests to drought can help maintain forest ecosystem services temporarily. However, our results suggest that relatively rigid management interventions are required to achieve significant effects. By using a combination of environmental monitoring, field experiments and modeling, we are able to gain insight into how forest ecosystem, and the services they provide, will respond to future changes.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The world’s mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. Comparisons between mediterranean-type climate regions have provided important insights into questions at the cutting edge of ecological, ecophysiological and evolutionary research. These regions, dominated by evergreen shrubland communities, contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 497-501 ◽  
Author(s):  
C. D. Boyette ◽  
G. E. Templeton ◽  
R. J. Smith

An indigenous, host-specific, pathogenic fungus that parasitizes winged waterprimrose [Jussiaea decurrens(Walt.) DC.] is endemic in the rice growing region of Arkansas. The fungus was isolated and identified asColletotrichum gloeosporioides(Penz.) Sacc. f.sp. jussiaeae(CGJ). It is highly specific for parasitism of winged waterprimrose and not parasitic on creeping waterprimrose (J. repensL. var.glabrescensKtze.), rice (Oryza sativaL.), soybeans [Glycine max(L.) Merr.], cotton (Gossypium hirsutumL.), or 4 other crops and 13 other weeds. The fungus was physiologically distinct from C.gloeosporioides(Penz.) Sacc. f. sp.aeschynomene(CGA), an endemic anthracnose pathogen of northern jointvetch[Aeschynomene virginica(L.) B.S.P.], as indicated by cross inoculations of both weeds. Culture in the laboratory and inoculation of winged waterprimrose in greenhouse, growth chamber and field experiments indicated that the pathogen was stable, specific, and virulent in a wide range of environments. The pathogen yielded large quantities of spores in liquid culture. It is suitable for control of winged waterprimrose. Winged waterprimrose and northern jointvetch were controlled in greenhouse and field tests by application of spore mixtures of CGJ and CGA at concentrations of 1 to 2 million spores/ml of each fungus in 94 L/ha of water; the fungi did not damage rice or nontarget crops.


Sign in / Sign up

Export Citation Format

Share Document