scholarly journals Effects of Dietary Starch Structure on Growth Performance, Serum Glucose–Insulin Response, and Intestinal Health in Weaned Piglets

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 543
Author(s):  
Xiaoqian Gao ◽  
Bing Yu ◽  
Jie Yu ◽  
Xiangbing Mao ◽  
Zhiqing Huang ◽  
...  

To investigate the effects of dietary starch structure (amylose/amylopectin ratio, AR) on serum glucose absorption metabolism and intestinal health, a total of ninety weaned piglets (Duroc × (Yorkshire × Landrace)) were randomly assigned to 5 dietary treatments and fed with a diet containing different AR (2.90, 1.46, 0.68, 0.31, and 0.14). The trial lasted for 21 d. In this study, the growth performance was not affected by the dietary starch structure (p > 0.05). Diets with higher amylose ratios (i.e., AR 2.90 and 1.46) led to a significant reduction of the serum glucose concentration at 3 h post-prandium (p < 0.01), while high amylopectin diets (AR 0.31 and 0.14) significantly elevated The expression of gene s at this time point (p < 0.01). High amylopectin diets also increased the apparent digestibility of crude protein (CP), ether extract (EE), dry matter (DM), gross energy (GE), and crude ash (p < 0.001). Interestingly, diet rich in amylose (AR 2.90) significantly elevated the butyric acid content (p < 0.05) and decreased the pH value (p < 0.05) in the cecal digesta. In contrast, diet rich in amylopectin (i.e., AR 0.14) significantly elevated the total bacteria populations in the cecal digesta (p < 0.001). Moreover, a high amylopectin diet (AR 0.14) tended to elevate the mRNA level of fatty acid synthase (FAS, p = 0.083), but significantly decreased the mRNA level of sodium-dependent glucose transporter 1 (SGLT1, p < 0.05) in the duodenal and jejunal mucosa, respectively. These results suggested that blood glucose and insulin concentrations were improved in high AR diets, and the diet also helped to maintain the intestinal health.

2021 ◽  
Vol 12 (7) ◽  
pp. 2962-2971
Author(s):  
Yuheng Luo ◽  
Jun He ◽  
Hua Li ◽  
Cong Lan ◽  
Jingyi Cai ◽  
...  

This study was conducted to compare the effect of raw (WB) or mixed fungi-fermented wheat bran (FWB) on the growth, nutrient digestibility and intestinal health in weaned piglets.


2020 ◽  
pp. 1-12
Author(s):  
Minyang Zhang ◽  
Guojun Hou ◽  
Ping Hu ◽  
Dan Feng ◽  
Jing Wang ◽  
...  

Abstract The present study was conducted to test the hypothesis that dietary supplementation with a nano chitosan–zinc complex (CP–Zn, 100 mg/kg Zn) could alleviate weaning stress in piglets challenged with enterotoxigenic Escherichia coli K88 by improving growth performance and intestinal antioxidant capacity. The in vivo effects of CP–Zn on growth performance variables (including gastrointestinal digestion and absorption functions and the levels of key proteins related to muscle growth) and the antioxidant capacity of the small intestine (SI) were evaluated in seventy-two weaned piglets. The porcine jejunal epithelial cell line IPEC-J2 was used to further investigate the antioxidant mechanism of CP–Zn in vitro. The results showed that CP–Zn supplementation increased the jejunal villus height and decreased the diarrhoea rate in weaned piglets. CP–Zn supplementation also improved growth performance (average daily gain and average daily feed intake), increased the activity of carbohydrate digestion-related enzymes (amylase, maltase, sucrase and lactase) and the mRNA expression levels of nutrient transporters (Na+-dependent glucose transporter 1, glucose transporter type 2, peptide transporter 1 and excitatory amino acid carrier 1) in the jejunum and up-regulated the expression levels of mammalian target of rapamycin (mTOR) pathway-related proteins (insulin receptor substrate 1, phospho-mTOR and phospho-p70S6K) in muscle. In addition, CP–Zn supplementation increased glutathione content, enhanced total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-px) activity, and reduced malondialdehyde (MDA) content in the jejunum. Furthermore, CP–Zn decreased the content of MDA and reactive oxygen species, enhanced the activity of T-SOD and GSH-px and up-regulated the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related proteins (Nrf2, NAD(P)H:quinone oxidoreductase 1 and haeme oxygenase 1) in lipopolysaccharide-stimulated IPEC-J2 cells. Collectively, these findings indicate that CP–Zn supplementation can improve growth performance and the antioxidant capacity of the SI in piglets, thus alleviating weaning stress.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 130-132
Author(s):  
D M Holanda ◽  
S W Kim

Abstract The efficacy of mycotoxin deactivators on health and growth performance of newly weaned pigs (27 d-old) fed diets naturally contaminated with deoxynivalenol was investigated. Sixty pigs were housed individually and assigned to 5 treatments for 34 d subdivided into 3 phases: NC (no added deoxynivalenol); PC (deoxynivalenol at 2 mg/kg); CYC (PC + clay/yeast culture based product, 0.2%); CYE (PC + clay/yeast cell wall/plant extracts/antioxidants based product, 0.2%); and CYB (PC + clay/inactivated yeast/botanicals/antioxidants based product, 0.2%). Blood was taken at d 14 and 34. Intestinal mucosa was taken at d 34. Data were analyzed using Proc Mixed of SAS with pre-planned contrasts. Deoxynivalenol reduced (P &lt; 0.05) ADG in P3. Pigs fed CYC had greater (P &lt; 0.05) ADG during overall period, ADFI during P3, and gain/feed during P2 than PC. At d 14, deoxynivalenol reduced (P &lt; 0.05) BUN/creatinine and tended to reduce (P = 0.088) BUN. Pigs fed CYB tended to have greater (P = 0.059) AST than PC. At d 34, pigs fed CYC (P = 0.083) and CYB (P = 0.068) tended to have lower serum CPK than PC. Pigs fed CYE had lower (P &lt; 0.05) BUN/creatinine than PC. Deoxynivalenol tended to increase (P = 0.068) malondialdehydes and decrease (P = 0.072) glutathione in jejunal mucosa. Pigs fed CYE and CYB had lower (P &lt; 0.05) malondialdehydes, whereas pigs fed CYB had greater (P &lt; 0.05) glutathione and tended to have lower (P = 0.079) jejunal IgA than PC. Pigs fed CYC (P = 0.066) and CYE (P = 0.099) tended to have lower jejunal IL8 than PC. In conclusion, deoxynivalenol compromised growth performance and intestinal health. The mycotoxin deactivators could enhance intestinal health of pigs fed diets with deoxynivalenol without affecting liver function.


2020 ◽  
Author(s):  
Zhenguo Yang ◽  
Yao Wang ◽  
Tianle He ◽  
Ziema Bumbie Gifty ◽  
Zhihong Sun ◽  
...  

Abstract BackgroundEconomic benefit is an important goal pursued by animal husbandry industry. The emergence of antibiotics has promoted the development of animal husbandry, but many problems caused by the abuse of antibiotics have caused concerns about the use of antibiotics from all walks of life. Therefore, it is imperative to find alternatives to antibiotics. A large number of studies have shown that plant extracts and probiotics have certain potential in improving animal growth performance, antioxidant capacity and immune function. The purpose of this study was to explore the effects of Yucca Shidigera Extract (YSE) and Candida Utilis (CU) on weaned piglets. We compared and evaluated the effects of YSE and CU on weaned piglets from the aspects of growth performance, immunity, antioxidant function, ileal morphology and microflora changes. Forty 28-day-old healthy weaned piglets (Rongchang pig×Landrace×Large white) were randomly divided into 4 treatments: (1) control group (CON); (2) CU; (3) YSE; (4) CU+YSE. ResultsOur results showed that YSE and CU improved the growth performance by significantly increasing final weight, average daily gain (ADG) (P < 0.05), and there is decreasing trend of feed/gain ratio (P=0.087). The effect of adding YSE or CU alone on growth performance had little difference, and the effect of oral CU was slightly better than that of adding YSE. At the same time, the combination of YSE and CU had a good effect on reducing the diarrhea rate. In addition, both YSE and CU increased the diversity of cecal microflora, and CU increased the diversity more significantly, but did not change the dominant microflora of cecum. We also found that the addition of YSE and CU could maintain the structural integrity of intestinal tissue and regulate intestinal pH, to maintain the level of intestinal-associated immune proteins. At the same time, YSE and CU have certain benefits in regulating intestinal flora. ConclusionYSE and CU can improve the growth performance, reduce the diarrhea rate, improve intestinal health, and increase the diversity and abundance of cecal microflora in weaned piglets. Therefore, they are expected to be used as probiotics in the production of weaned piglets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Miaomiao Bai ◽  
Hongnan Liu ◽  
Shanshan Wang ◽  
Qingyan Shu ◽  
Kang Xu ◽  
...  

Background:Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China.Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota.Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets.Results: Supplemental 4,000 mg/kg MCR significantly increased (P &lt; 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P &lt; 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1β, inhibiting kappa-B kinase β (IKKβ), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P &lt; 0.05) and the relative abundances of Firmicutes and Lactobacillus (P &lt; 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P &lt; 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P &gt; 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P &lt; 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P &lt; 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg.Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKβ/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 407-408
Author(s):  
Vitor Hugo C Moita ◽  
Sung Woo Kim ◽  
Marcos E Duarte

Abstract This study aimed to determine supplemental effects of xylanase (endo-β-1,4-xylanase, CJ BIO, Korea) and its optimal supplementation level on viscosity of jejunal digesta, nutrient digestibility, intestinal health, and growth performance of pigs. Sixty weaned pigs (6.9 ± 0.8 kg BW) were randomly allotted to 5 treatments based on a RCBD with initial BW and sex as block and fed in 3 phases (P1/2/3 for 10/14/14 d, respectively). Dietary treatment were the supplementation levels of xylanase providing (0, 220, 440, 880, and 1,760 XU/kg feed). Titanium dioxide (0.4%) was added to P3 diets as an indigestible marker to measure AID. On d 38, all pigs were euthanized to collect ileal and jejunal digesta to measure AID and viscosity, respectively; jejunal mucosa and tissue to measure intestinal health parameters. Data were analyzed using SAS 9.4. Xylanase supplementation from 0 to 350 XU/kg increased (P &lt; 0.05) ADG (596 to 746 g/d) during the last week, whereas there was no effect by xylanase on the overall growth performance. Increasing xylanase supplementation reduced (P &lt; 0.05) digesta viscosity (1.91 to 1.48 mPa.s); increased (P &lt; 0.05) the AID of EE (83.9 to 89.5%), NDF (52.9 to 56.9%) and ADF (35.3 to 39.3%); tended to reduce Cupriavidus (P = 0.073; 1.33 to 0.63%) and Megasphaera (P = 0.063; 1.26 to 0.23%); and tended to increase Succinivibrio (P = 0.076; 1.10 to 2.71%) and Pseudomonas (P = 0.060; 4.89 to 13.29%). Xylanase supplementation from 0 to 520 XU/kg reduced (P &lt; 0.05) jejunal MDA (0.99 to 0.58 µmol/mg protein). In conclusion, xylanase supplementation showed benefits on intestinal health by reducing digesta viscosity, oxidative stress status, and harmful bacteria in the jejunal mucosa and by increasing the AID of nutrients. Xylanase supplementation at a range of 350 to 520 XU/kg feed provided the most benefits.


2020 ◽  
Vol 98 (9) ◽  
Author(s):  
Betty R McConn ◽  
Alan W Duttlinger ◽  
Kouassi R Kpodo ◽  
Susan D Eicher ◽  
Brian T Richert ◽  
...  

Abstract Dietary antibiotic use has been limited in swine production due to concerns regarding antibiotic resistance. However, this may negatively impact the health, productivity, and welfare of pigs. Therefore, the study objective was to determine if combining dietary synbiotics and 0.20% l-glutamine would improve pig growth performance and intestinal health following weaning and transport when compared with traditionally used dietary antibiotics. Because previous research indicates that l-glutamine improves swine growth performance and synbiotics reduce enterogenic bacteria, it was hypothesized that supplementing diets with 0.20% l-glutamine (GLN) and synbiotics (SYN; 3 strains of Lactobacillus [1.2 × 10^9 cfu/g of strain/pig/d] + β-glucan [0.01 g/pig/d] + fructooligosaccharide [0.01 g/pig/d]) would have an additive effect and improve pig performance and intestinal health over that of dietary antibiotics. Mixed-sex pigs (N = 226; 5.86 ± 0.11 kg body weight [BW]) were weaned (19.4 ± 0.2 d of age) and transported for 12 h in central Indiana. Pigs were blocked by BW and allotted to one of two dietary treatments (5 to 6 pigs per pen): antibiotics (positive control [PC]; chlortetracycline [441 ppm] + tiamulin [38.5 ppm]), no antibiotics (negative control [NC]), GLN, SYN, or the NC diet with both the GLN and SYN additives (GLN + SYN) fed for 14 d. From day 14 post-weaning to the end of the grow-finish period, all pigs were provided common antibiotic-free diets. Data were analyzed using PROC GLIMMIX and PROC MIXED in SAS 9.4. Overall, haptoglobin was greater (P = 0.03; 216%) in NC pigs compared with PC pigs. On day 13, GLN and PC pigs tended to have reduced (P = 0.07; 75.2% and 67.3%, respectively) haptoglobin compared with NC pigs. On day 34, the jejunal goblet cell count per villi and per millimeter tended to be greater (P &lt; 0.08; 71.4% and 62.9%, respectively) in SYN pigs compared with all other dietary treatments. Overall, jejunal mucosa tumor necrosis factor-alpha (TNFα) gene expression tended to be greater (P = 0.09; 40.0%) in NC pigs compared with PC pigs on day 34. On day 34, jejunal mucosa TNFα gene expression tended to be greater (P = 0.09; 33.3%, 41.2%, and 60.0%, respectively) in GLN pigs compared with SYN, GLN + SYN, and PC pigs. Although it was determined that some metrics of pig health were improved by the addition of GLN and SYN (i.e., haptoglobin and goblet cell count), overall, there were very few differences detected between dietary treatments and this may be related to the stress load incurred by the pigs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhenguo Yang ◽  
Yao Wang ◽  
Tianle He ◽  
Gifty Ziema Bumbie ◽  
Liuting Wu ◽  
...  

Weaning piglets experienced the transformation from breast milk to solid feed and present the proliferation of pathogens, the presence of diarrhea, poor growth performance and even death. Plant extracts and probiotics have certain potential in improving animal growth performance, antioxidant capacity and immune function. The purpose of this study was to explore the effects of dietary yucca schidigera extract (YSE) and oral Candida utilis (CU) on growth performance and intestinal health weaned piglets. According to a 2 × 2 factorial design with the main factors being CU (orally administered 1 mL of 0.85% saline with or without CU; fed basal diet with or without 120 mg/kg YSE), forty 28 d healthy weaned piglets were randomly allocated into four groups of 10 barrows each: (1) piglets fed basal diet and orally administered 1 mL of 0.85% saline (CON); (2) piglets fed basal diet and orally administered 1 mL 1 × 109 cfu/mL C. utilis in 0.85% saline (CU); (3) piglets fed the basal diet containing YSE (120 mg/kg) and orally administered 1 mL of 0.85% saline (YSE); (4) Piglets fed the basal diet containing 120 mg/kg YSE and 1 mL 1 × 109 cfu/mL C. utilis in 0.85% saline (YSE+CU). This study lasted 28 days and evaluated the effects of dietary YSE and oral CU on growth performance, immunity, antioxidant function, ileal morphology, and intestinal microflora in weaned piglets. Dietary YSE increased ADG, the spleen and lymph node indexes, serum GLU, BUN, T-SOD, T-AOC, CAT concentrations, ileal villus height and villus height/crypt depth, jejunal occludin, and β-definsin-2 concentrations and ileal occludin concentration in weaned piglets (P &lt; 0.05); decreased the diarrhea rate and mortality, rectal pH and urine pH, the BUN and MDA concentrations, crypt depth (P &lt; 0.05); improved the diversity of cecal microflora. Orally CU increased ADG, and ADFI, the T-SOD, T-AOC, and CAT activity, ileal villus height, villus height/crypt depth, jejunum occludin, and β-definsin-2 concentrations (P &lt; 0.05); reduced the diarrhea rate and mortality, urine pH, the BUN and MDA concentrations, crypt depth (P &lt; 0.05); improved the diversity of cecal microflora. Dietary YSE and orally CU increased the T-SOD, T-AOC, and CAT activity, villus height/crypt depth, jejunal occludin concentration; reduced the diarrhea rate of weaned piglets by 28%, gastric pH, ileal pH, cecal pH and urine pH, MDA, crypt depth; improved the diversity of cecal microflora. YSE and CU could improve the growth performance, reduce the diarrhea rate, improve intestinal health, and increase the diversity and abundance of cecal microflora in weaned piglets and expected to be used as antibiotics alternative feed additives in the production of weaned piglets.


Sign in / Sign up

Export Citation Format

Share Document