scholarly journals Evaluating the Suitability of Hazelnut Skin as a Feed Ingredient in the Diet of Dairy Cows

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1653
Author(s):  
Manuela Renna ◽  
Carola Lussiana ◽  
Vanda Malfatto ◽  
Mathieu Gerbelle ◽  
Germano Turille ◽  
...  

Hazelnut skin (HS) was evaluated as a source of nutrients for dairy cows. In total, 26 Aosta Red Pied cows were divided into two balanced groups. All cows were fed hay ad libitum. The control group was also given 6 kg of concentrate, while the hazelnut skin group (HAZ) was given 1 kg of the same concentrate that was substituted by 1 kg of HS. The dry matter intake of the cows was reduced by the dietary inclusion of HS (p ≤ 0.001). The milk yield and main constituents were unaffected by treatment. Milk from HAZ cows showed decreased concentrations of de novo saturated fatty acids (FAs), odd- and branched-chain FA, α-linolenic acid, and long-chain n-3 FAs, as well as increased concentrations of stearic acid, oleic acid, linoleic acid, total monounsaturated FAs, trans biohydrogenation intermediates, and α–tocopherol. Replacing the concentrate with HS increased the human-inedible feed quota in the diet and improved the sustainability of milk production in terms of the food-feed competition. Our results suggest that it is possible to add economic value to organic waste from the hazelnut industry using HS as a feed ingredient for dairy cows, enhancing the feed efficiency and milk antioxidant activity and having expected impacts on the nutraceutical quality of milk fat.

2015 ◽  
Vol 82 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Jarosława Rutkowska ◽  
Małgorzata Białek ◽  
Emilia Bagnicka ◽  
Justyna Jarczak ◽  
Krzysztof Tambor ◽  
...  

The aim of the study was to assess the effects of partial replacement of soybean meal with a protein-equivalent amount of rapeseed cake in the diet on milking parameters and fatty acid (FA) composition of milk in dairy cows. Two groups of Holstein-Friesian cows, 8 each, consisting of randomised blocks were studied: a control group (C) was given a traditional high-protein supplement (extracted soybean meal) and the experimental group (E), had part of extracted soybean meal replaced with rapeseed cake. Dry matter intake and milk yield in both groups were not affected by the diet but milk fat percentage and yield were decreased in both groups. Rapeseed cake had no effect on milk acidity or on protein (including casein) and lactose contents. A lower concentration of urea in milk in E group indicated a proper ratio of protein to energy in the fodder. Health condition of mammary gland and indicators of metabolic profile were not affected by rapeseed cake supplementation. In E group, the share of atherogenic saturated fatty acids (FA) was reduced after 11 weeks: palmitic, by 26% and myristic, by 22%; moreover, as compared with control cows, the content of monounsaturated FA in milk increased by 44% after 3 weeks and by 68% after 11 weeks, t-18:1 and c-9 t-11 isomer of CLA increased about 2·5-fold after 11 weeks. In E group, the atherogenic index (AI) was significantly (P < 0·001) lower than in C (by 54% on average) and the decrease with time was considerable (by 29%, P < 0·001). Contents of odd- and branched- chain FA in milk were not significantly affected thus reflecting proper rumen function. Partial replacement of soybean meal with rapeseed cake in the diet of cows may improve both milking indices and FA profile of milk.


2021 ◽  
pp. 104485
Author(s):  
Ali Razzaghi ◽  
Mohammad Malekkhahi ◽  
R. Valizadeh ◽  
Ehsan Parand ◽  
Ali-Reza Bayat

2017 ◽  
Vol 84 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Jung Nam Lee ◽  
Yong Wang ◽  
Ya Ou Xu ◽  
Yu Can Li ◽  
Fang Tian ◽  
...  

This research communication describes the profile of gene expression related to the synthesis of yak milk as determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). Significant up-regulation during lactation were observed in genes related to fatty acid (FA) uptake from blood (LPL, CD36), intracellular FA transport (FABP3), intracellular FA activation of long- and short-chain FAs (ACSS1, ACSS2, ACSL1), de novo synthesis (ACACA), desaturation (SCD), triacyglycerol (TAG) synthesis (AGPAT6, GPAM, LPIN1), lipid droplet formation (PLIN2, BTN1A1, XDH), ketone body utilisation (BDH1, OXCT1), and transcription regulation (THRSP, PPARGC1A). In particular, intracellular de novo FA synthesis (ACSS2, ACACA, and FABP3) and TAG synthesis (GPAM, AGPAT6, and LPIN1), whose regulation might be orchestrated as part of the gene network under the control of SERBF1 in the milk fat synthesis process, were more activated compared to levels in dairy cows. However, the genes involved in lipid droplet formation (PLIN2, XDH, and BTN1A1) were expressed at lower levels compared to those in dairy cows, where these genes are mainly controlled by the PPARG regulator.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


Author(s):  
D. Tristant ◽  
C. A. Moran

SummaryThe following trial was conducted to evaluate the impact of feeding Yea-Sacc® (YS; Alltech Inc, USA), a zootechnical feed additive based on a live probiotic strain of Saccharomyces cerevisiae, to lactating dairy cows over a 12 week period. Sixty-four primiparous and multiparous Holstein dairy cows, grouped to give similar range of parity, physiological and milk production stages, were selected for the study. Cows were equally allocated to either a control feed group or a diet supplemented with YS (32 cows per treatment). The test diet was formulated to include YS (Yea-Sacc® Farm Pak) incorporated in the total mixed ration (TMR), supplying a target dose of 5 × 107 CFU/kg feed dry matter (DM). This target dose delivered 1 × 109 CFU/cow/day, for a cow consuming 20 kg feed (DM basis) daily. Each cow was considered a replicate unit. Cows were fed a nutritionally adequate total TMR plus hay and a supplementary protein/energy concentrate (calculated according to milk yield) for 12 weeks, supplied once a day after the morning milking. Weigh backs of feed were recorded daily, with refusals being maintained at 3% of the total intake. During the 12 week study period, YS had significant beneficial effects on milk production (+0.8 kg/day; P = 0.003), energy corrected milk production (+1.4 kg/day; P < 0.0001), synthesis of milk protein (+36 g/day; P = 0.001), milk protein content (+0.3 g/kg; P = 0.009), and milk urea content (−0.09 mg/l; P = 0.004). The synthesis of milk fat was similar between treatments but milk fat content was lower for the YS group compared to the control group (−1.1 g/kg; P = 0.0002). Lactose content was always higher (+0.8 g/kg; P < 0.0001) for the YS group, indicating enhanced energy utilisation. In general, the effect of YS was higher during the first study period (one to seven weeks), when cows were in early lactation and the production potential was higher. YS cows produced significantly more milk during the study, and an additional 220 kg milk per cow was sold from this group from the output measured from the beginning of the study to two weeks post-trial. However, the statistical analysis including the post-study period did not show a significant effect. The 305-day simulated milk production was higher for the YS group (+400 kg/cow) but again the difference was not significant. In conclusion, YS at a target dose of 5 × 107 CFU/kg DM improved milk production and milk quality in healthy dairy cows. In addition, when the data were included in a whole-farm model, feeding YS reduced methane emissions by 4%, reduced the number of animals required for the desired milk production by 4% and increased overall farm margins by 1.4%.


Author(s):  
Marinela ENCULESCU

The aim of this study was to evaluate the effects of fresh yeast (Saccharomyces cerevisiae) supplementation in the dairy cows’ diets on productive performances and health status. The study was carried out in the experimental farm of the Research and Development Institute for Bovine Balotești on 50 multiparous Romanian Black and Spotted dairy cows, randomly divided into two groups (N = 25 heads/group), according to age, milk yield, body weight and health status. The experimental group received 80 g Saccharomyces cerevisiae/head/day for one year. The groups were fed with the same diet and had free access to water and salt. Results were expressed as a mean (±Standard Deviation). The t-test was applied to obtain the significance of difference. Supplementation of the diet with Saccharomyces cerevisiae had a significant effect (P <0.001) on milk yield (20.71±1.65 l/head/day) for the experimental group comparing with the control group (18.22±1.81 l/head/day), and on milk protein and lactose (P <0.05). The addition of Saccharomyces cerevisiae in dairy cows’ diet did not improve the milk fat, hematological and biochemical/urine indicators in the experimental group (P >0.05). However, for alkaline phosphatase, differences at the end of the study have been observed (P <0.01). The beneficial effect of the yeast and yeast products in ruminants could be attributed to microbial activity by increasing the number of beneficial bacteria in the rumen of the animals. The use of Saccharomyces cerevisiae as an alternative source of economic protein, vitamins and minerals in dairy cows’ diet represents an effective measure to optimize animal productivity.


2009 ◽  
Vol 77 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Roland G Karcagi ◽  
Tibor Gaál ◽  
Piroska Ribiczey ◽  
Gyula Huszenicza ◽  
Ferenc Husvéth

The aim of the study was to test the effect of rumen-inert fat supplements of different chemical forms or containing different unsaturated/saturated (U/S) fatty acid contents on milk production, milk composition and liver and blood metabolic variables of high-yielding dairy cows in the peripartal period. Thirty Holstein-Friesian dairy cows were divided into three equal groups and fed a corn silage-based diet, without fat supplementation (control) or supplemented with 11·75 MJ NEl per day of calcium soaps of palm oil fatty acids (CAS; U/S=61/39) or with 11·75 MJ NEl per day of hydrogenated palm oil triglyceride (HTG; U/S=6/94). Each diet was fed from 25±2 d prior to the expected calving to 100±5 d post partum. Compared with the control, both CAS and HTG supplementation resulted in an increase of the average milk yield. Milk fat content and fat-corrected milk yield were higher in the HTG group but lower in the CAS group than in the control group. In all groups liver triglyceride concentrations (TGL) increased from 15 d prepartum to 5 d post partum, and then decreased thereafter. At 5 d TGL was lower in the HTG group than control or CAS cows. No significant differences were detected in TGL among dietary treatments at 15 d prepartum and 25 d post partum. Higher plasma glucose and insulin and lower non-esterified fattay acids and β-hydroxybutyrate concentrations and aspartate aminotransferase activity were measured in the HTG group than in the control or CAS groups at 5 d or 25 d post partum. Our results show that HTG may provide a better energy supply for high-yielding dairy cows in negative energy balance than CAS around calving.


2005 ◽  
Vol 45 (4) ◽  
pp. 331 ◽  
Author(s):  
W. J. Fulkerson ◽  
K. McKean ◽  
K. S. Nandra ◽  
I. M. Barchia

Two experiments were conducted, each over several months, when cows grazed either ryegrass (September–November 2001) or kikuyu (February–March 2002) pastures, to assess the effects of accurately allocating feed on a daily basis to lactating Holstein–Friesian dairy cows. In each case, 28 cows were randomly stratified into 2 equal groups on the basis of milk and milk component yield, liveweight, age and days in lactation. The metabolisable energy requirements of the animals were estimated from standard established requirements. In each experiment, both groups of cows received the same amount of supplement over a period that was equivalent to a pasture regrowth cycle of 12–16 days. The control group received a set amount of supplements each day, while supplements fed to the adjusted group varied, dependent on pasture available. Available pasture was varied from 7 to 21 kg DM/cow.day (above a stubble height of 5 cm), to mimic the variation found on well-managed dairy farms. When pasture available was above the predicted requirement for cows in the adjusted group, pasture availability was restricted to predicted requirements and the extra milk that could be produced from the spared pasture was estimated. However, cows in the control group had the opportunity to eat more pasture if allocated more than required. This could result in more milk being produced, a gain in liveweight, and/or a higher post-grazing pasture residue (and hence potentially improve pasture regrowth). If less pasture than required was allocated to the control group, production could reduce or the cows might graze harder. Thus, in the control group the proportion of forage to supplement remained relatively constant, but intake varied in relation to pasture allocated, while for the adjusted group the total intake was kept relatively constant. In experiment 1 (ryegrass), the milk yield, percentage of milk fat and liveweight change of cows in the control and adjusted groups was not significantly different. However, the cows in the adjusted group produced 0.016 kg/cow.day more milk protein. As the control group ate 0.35 kg DM/cow.day more ryegrass pasture (P = 0.008) it is assumed that accurate daily allocation of feed improved feed efficiency. In experiment 2, the milk yield and percentage of milk protein of cows grazing kikuyu pastures was not significantly different between groups but the percentage of milk fat and covariate-corrected liveweight at the end of the experiment was higher in the control group than in the adjusted group. The pasture spared by cows in the adjusted group was predicted to produce 8.9% more milk when grazing ryegrass pasture and 12.3% when grazing kikuyu pasture. Linear regression analysis of pasture on offer on post-grazing pasture residue was not significant for the cows in the adjusted group but was significant for the control group cows when grazing either pasture, indicating success in accurately allocating supplementary feed to maintain a constant grazing pressure. The results of this study should assist dairy farmers in deciding whether the effort required to allocate feed accurately to dairy cows on a daily basis, is worthwhile.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohsen Danesh Mesgaran ◽  
Hassan Kargar ◽  
Sadjad Danesh Mesgaran ◽  
Ali Javadmanesh

This study aimed to monitor the effect of including rumen-protected L-carnitine (Carneon 20 Rumin-Pro, Kaesler Nutrition GmbH, Cuxhaven, Germany) in the transition diet on the productive and metabolic responses of multiparous high-producing Holstein dairy cows. Thirty-two multiparous cows were allocated in a completely randomized design to receive the same diet plus 60 g fat prill containing 85% palmitic acid (control, n = 16) or 100 g rumen-protected L-carnitine (RLC, n = 16); at 28 days before expected calving until 28 days in milk (DIM). Fat prill was included in the control diet to balance the palmitic acid content of both experimental diets. Milk production over the 28 DIM for the control and RLC groups was 46.5 and 47.7 kg, respectively. Milk fat content tended to increase upon rumen-protected L-carnitine inclusion (p = 0.1). Cows fed rumen-protected L-carnitine had higher fat- and energy-corrected milk compared with the control group. Pre- and post-partum administration of L-carnitine decreased both high- and low-density lipoprotein concentrations in peripheral blood of post-partum cows. The results of this study indicated that the concentration of triglycerides and beta-hydroxybutyrate was not significantly different between the groups, whereas the blood non-esterified fatty acid concentration was markedly decreased in cows supplemented with L-carnitine. Animals in the RLC group had a significant (p &lt; 0.05) lower blood haptoglobin concentration at 7 and 14 DIM than the control. Animals in the RLC group had a lower concentration of blood enzymes than those of the control group. The mRNA abundance of Toll-like receptors 4, cluster of differentiation 14, and myeloid differential protein 2 did not significantly change upon the supplementation of L-carnitine in the transition diet. In summary, the dietary inclusion of RLC improved dairy cow's performance during the early lactation period. Greater production, at least in part, is driven by improved energy utilization efficiency and enhanced metabolic status in animals during the periparturient period.


2020 ◽  
pp. 13-14
Author(s):  
Ayub Yu. Aliev ◽  
◽  
Karine A. Karpushchenko ◽  
Abdulgamid A. Aliev ◽  

The data obtained as a result of the use of a mineral lick briquette Amirasol R-Z in the diets of dairy cows are analyzed in the article. Authors studied the influence of the mineral lick briquette Amirasol R-Z on the biochemical parameters and milk productivity of dairy cows. The experiments were carried out on dairy cows of the red steppe breed in the conditions of the plain zone of the Republic of Dagestan. Two groups of dairy cows were formed (10 heads in each). According to the scheme of the experiment, the control group received a basic diet, the experimental group received the basic diet and the mineral lick briquette Amirasol R-Z. Each cow of the experimental group was given individually one lick briquette in a dose of 4 kg during 90 days. Researches and data processing were carried out according to generally accepted methods. Blood was taken from the experimental animals from the jugular vein for laboratory studies at the end of the experiment. The milk productivity and fat content of milk were taken into account by carrying out monthly control milk yields. At the same time, the positive effect of a lick briquette on the biochemical parameters of blood has been proven: reserve alkalinity, glucose, macro- and microelements, the activity of the copper-containing enzyme ceruloplasmin and milk productivity. A significant increase in the blood of glucose concentration by 12.93% in the cows of the experimental group, the level of reserve alkalinity by 17.66%, the concentration of macroelements and microelements, milk productivity by 5.7%, milk fat by 2.77% compared with the control group. The use of the mineral lick briquette Amirasol R-Z in the diets of dairy cows helps to prevent macro- and microelementoses, increase milk productivity, milk fat content, nonspecific immunity and obtain of healthy calves.


Sign in / Sign up

Export Citation Format

Share Document