scholarly journals Genetic and Chemical Engineering of Phages for Controlling Multidrug-Resistant Bacteria

Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Dingming Guo ◽  
Jingchao Chen ◽  
Xueyang Zhao ◽  
Yanan Luo ◽  
Menglu Jin ◽  
...  

Along with the excessive use of antibiotics, the emergence and spread of multidrug-resistant bacteria has become a public health problem and a great challenge vis-à-vis the control and treatment of bacterial infections. As the natural predators of bacteria, phages have reattracted researchers’ attentions. Phage therapy is regarded as one of the most promising alternative strategies to fight pathogens in the post-antibiotic era. Recently, genetic and chemical engineering methods have been applied in phage modification. Among them, genetic engineering includes the expression of toxin proteins, modification of host recognition receptors, and interference of bacterial phage-resistant pathways. Chemical engineering, meanwhile, involves crosslinking phage coats with antibiotics, antimicrobial peptides, heavy metal ions, and photothermic matters. Those advances greatly expand the host range of phages and increase their bactericidal efficiency, which sheds light on the application of phage therapy in the control of multidrug-resistant pathogens. This review reports on engineered phages through genetic and chemical approaches. Further, we present the obstacles that this novel antimicrobial has incurred.

2021 ◽  
Vol 7 (8) ◽  
pp. 112
Author(s):  
Lingchao Xiang ◽  
Ozioma Udochukwu Akakuru ◽  
Chen Xu ◽  
Aiguo Wu

Infections caused by pathogenic bacteria, especially multidrug-resistant bacteria, have become a serious worldwide public health problem. Early diagnosis and treatment can effectively prevent the adverse effects of such infections. Therefore, there is an urgent need to develop effective methods for the early detection, prevention, and treatment of diseases that are caused by bacterial infections. So far, magnetic material nanoparticles (MNPs) have been widely used in the detection and treatment of bacterial infections as detection agents and therapeutics. Therefore, this review describes the recent research on MNPs in bacterial detection and treatment. Finally, a brief discussion of challenges and perspectives in this field is provided, which is expected to guide the further development of MNPs for bacterial detection and treatment.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 688 ◽  
Author(s):  
Karin Moelling ◽  
Felix Broecker ◽  
Christian Willy

The rise of multidrug-resistant bacteria has resulted in an increased interest in phage therapy, which historically preceded antibiotic treatment against bacterial infections. To date, there have been no reports of serious adverse events caused by phages. They have been successfully used to cure human diseases in Eastern Europe for many decades. More recently, clinical trials and case reports for a variety of indications have shown promising results. However, major hurdles to the introduction of phage therapy in the Western world are the regulatory and legal frameworks. Present regulations may take a decade or longer to be fulfilled. It is of urgent need to speed up the availability of phage therapy.


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


Author(s):  
Johanna M. Vanegas ◽  
Lorena Salazar-Ospina ◽  
Gustavo A. Roncancio ◽  
Julián Builes ◽  
Judy Natalia Jiménez

ABSTRACT The emergence of resistance mechanisms not only limits the therapeutic options for common bacterial infections but also worsens the prognosis in patients who have conditions that increase the risk of bacterial infections. Thus, the effectiveness of important medical advances that seek to improve the quality of life of patients with chronic diseases is threatened. We report the simultaneous colonization and bacteremia by multidrug-resistant bacteria in two hemodialysis patients. The first patient was colonized by carbapenem- and colistin-resistant Klebsiella pneumoniae, carbapenem-resistant Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA). The patient had a bacteremia by MRSA, and molecular typing methods confirmed the colonizing isolate was the same strain that caused infection. The second case is of a patient colonized by extended-spectrum beta-lactamases (ESBL)-producing Escherichia coli and carbapenem-resistant Pseudomonas aeruginosa. During the follow-up period, the patient presented three episodes of bacteremia, one of these caused by ESBL-producing E. coli. Molecular methods confirmed colonization by the same clone of ESBL-producing E. coli at two time points, but with a different genetic pattern to the strain isolated from the blood culture. Colonization by multidrug-resistant bacteria allows not only the spread of these microorganisms, but also increases the subsequent risk of infections with limited treatments options. In addition to infection control measures, it is important to establish policies for the prudent use of antibiotics in dialysis units.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2348
Author(s):  
Mohammed Mijbas Mohammed Alomari ◽  
Marta Dec ◽  
Renata Urban-Chmiel

The global increase in multidrug-resistant infections caused by various pathogens has raised concerns in human and veterinary medicine. This has renewed interest in the development of alternative methods to antibiotics, including the use of bacteriophages for controlling bacterial infections. The aim of this review is to present potential uses of bacteriophages as an alternative to antibiotics in the control of bacterial infections caused by multidrug-resistant bacteria posing a risk to humans, with particular emphasis on foodborne and zoonotic pathogens. A varied therapeutic and immunomodulatory (activation or suppression) effect of bacteriophages on humoral and cellular immune response mechanisms has been demonstrated. The antibiotic resistance crisis caused by global antimicrobial resistance among bacteria creates a compelling need for alternative safe and selectively effective antibacterial agents. Bacteriophages have many properties indicating their potential suitability as therapeutic and/or prophylactic agents. In many cases, bacteriophages can also be used in food quality control against microorganisms such as Salmonella, Escherichia coli, Listeria, Campylobacter and others. Future research will provide potential alternative solutions using bacteriophages to treat infections caused by multidrug-resistant bacteria.


2021 ◽  
Vol 4 (3) ◽  
pp. 10728-10744
Author(s):  
Gabriel Monici Vieira ◽  
Débora Oliveira Piva ◽  
Rafaela Lucas Damasceno ◽  
Ricardo de Villa Nova Japiassu ◽  
Anamaria Camargo Macedo ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


Nanoscale ◽  
2020 ◽  
Vol 12 (37) ◽  
pp. 19149-19158
Author(s):  
Jouharsha Afthab ◽  
Nafeesa Khatoon ◽  
Lulu Zhou ◽  
Tianming Yao ◽  
Shuo Shi

A silver nanoformulation for combating bacterial infections and its integration in Boolean analysis for the detection of multiple bacteria has been developed.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Rosanna C. T. Wright ◽  
Ville-Petri Friman ◽  
Margaret C. M. Smith ◽  
Michael A. Brockhurst

ABSTRACTPhage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, usingPseudomonas aeruginosaand pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy.IMPORTANCEGlobally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance evolution in the opportunistic pathogenPseudomonas aeruginosa. These findings suggest that phage combinations can be optimized to limit the emergence and persistence of resistance, thereby promoting the long-term usefulness of phage therapy.


Sign in / Sign up

Export Citation Format

Share Document