scholarly journals Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 767 ◽  
Author(s):  
Umberto Fanelli ◽  
Marco Pappalardo ◽  
Vincenzo Chinè ◽  
Pierpacifico Gismondi ◽  
Cosimo Neglia ◽  
...  

Artificial intelligence (AI) is a field of science and engineering concerned with the computational understanding of what is commonly called intelligent behavior. AI is extremely useful in many human activities including medicine. The aim of our narrative review is to show the potential role of AI in fighting antimicrobial resistance in pediatric patients. We searched for PubMed articles published from April 2010 to April 2020 containing the keywords “artificial intelligence”, “machine learning”, “antimicrobial resistance”, “antimicrobial stewardship”, “pediatric”, and “children”, and we described the different strategies for the application of AI in these fields. Literature analysis showed that the applications of AI in health care are potentially endless, contributing to a reduction in the development time of new antimicrobial agents, greater diagnostic and therapeutic appropriateness, and, simultaneously, a reduction in costs. Most of the proposed AI solutions for medicine are not intended to replace the doctor’s opinion or expertise, but to provide a useful tool for easing their work. Considering pediatric infectious diseases, AI could play a primary role in fighting antibiotic resistance. In the pediatric field, a greater willingness to invest in this field could help antimicrobial stewardship reach levels of effectiveness that were unthinkable a few years ago.

Author(s):  
Pravin Shende ◽  
Nikita P. Devlekar

: Stem cells (SCs) show a wide range of applications in the treatment of numerous diseases including neurodegenerative diseases, diabetes, cardiovascular diseases, cancer, etc. SC related research has gained popularity owing to the unique characteristics of self-renewal and differentiation. Artificial intelligence (AI), an emerging field of computer science and engineering has shown potential applications in different fields like robotics, agriculture, home automation, healthcare, banking, and transportation since its invention. This review aims to describe the various applications of AI in SC biology including understanding the behavior of SCs, recognizing individual cell type before undergoing differentiation, characterization of SCs using mathematical models and prediction of mortality risk associated with SC transplantation. This review emphasizes the role of neural networks in SC biology and further elucidates the concepts of machine learning and deep learning and their applications in SC research.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 655-655
Author(s):  
Walter Boot

Abstract The Gerontological Society of America is celebrating its75th anniversary and in those75 years the world has undergone an amazing technological revolution. During this period, computers transformed from systems that once filled entire rooms to much more powerful devices that fit in our pockets. We have seen the introduction of wireless technologies, augmented and virtual reality, smart home devices, autonomous vehicles, and much more. This session focuses on a new technological advance that has the potential to support the health, wellbeing, and independence of older adults and caregivers: artificial intelligence (AI). This session will present applications of AI, Machine Learning (ML), and other novel analytic methods and how they have the potential to impact the lives of older adults in a variety of context. As AI is increasingly being involved in workplace hiring, the first talk focuses on older adults’ attitudes toward the role of AI in this decision making process. Next, novel ML approaches applied to social media are discussed in terms of understanding the needs of Alzheimer’s caregivers. Next, ML techniques are discussed in terms of developing biomarkers that can be applied in diagnosis and assessment of therapeutic responses by detecting mood, which may have important implications for older adults living with dementia. Then, the potential role of AI is discussed in terms of developing reminder systems to promote older adults’ adherence to technology-based health activities. Finally, novel analytic approaches are discussed in terms of harnessing digital metrics to detect the risk of cognitive decline.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 834
Author(s):  
Magbool Alelyani ◽  
Sultan Alamri ◽  
Mohammed S. Alqahtani ◽  
Alamin Musa ◽  
Hajar Almater ◽  
...  

Artificial intelligence (AI) is a broad, umbrella term that encompasses the theory and development of computer systems able to perform tasks normally requiring human intelligence. The aim of this study is to assess the radiology community’s attitude in Saudi Arabia toward the applications of AI. Methods: Data for this study were collected using electronic questionnaires in 2019 and 2020. The study included a total of 714 participants. Data analysis was performed using SPSS Statistics (version 25). Results: The majority of the participants (61.2%) had read or heard about the role of AI in radiology. We also found that radiologists had statistically different responses and tended to read more about AI compared to all other specialists. In addition, 82% of the participants thought that AI must be included in the curriculum of medical and allied health colleges, and 86% of the participants agreed that AI would be essential in the future. Even though human–machine interaction was considered to be one of the most important skills in the future, 89% of the participants thought that it would never replace radiologists. Conclusion: Because AI plays a vital role in radiology, it is important to ensure that radiologists and radiographers have at least a minimum understanding of the technology. Our finding shows an acceptable level of knowledge regarding AI technology and that AI applications should be included in the curriculum of the medical and health sciences colleges.


Author(s):  
Santosh Kumar ◽  
Roopali Sharma

Role of computers are widely accepted and well known in the domain of Finance. Artificial Intelligence(AI) methods are extensively used in field of computer science for providing solution of unpredictable event in a frequent changing environment with utilization of neural network. Professionals are using AI framework into every field for reducing human interference to get better result from few decades. The main objective of the chapter is to point out the techniques of AI utilized in field of finance in broader perspective. The purpose of this chapter is to analyze the background of AI in finance and its role in Finance Market mainly as investment decision analysis tool.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 468 ◽  
Author(s):  
Fátima Abreu-Salinas ◽  
Dafne Díaz-Jiménez ◽  
Isidro García-Meniño ◽  
Pilar Lumbreras ◽  
Ana María López-Beceiro ◽  
...  

The aim of this work was to assess the prevalence of extended spectrum-β-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in fecal samples recovered from rural and urban healthy dogs in Northwest Spain (Galicia) to identify potential high-risk clones and to molecularly characterize positive isolates regarding the genes coding for ESBL/pAmpC resistance and virulence. Thirty-five (19.6%) out of 179 dogs were positive for cephalosporin-resistant Enterobacteriaceae, including Escherichiacoli and Klebsiella pneumoniae (39 and three isolates, respectively). All the isolates were multidrug resistant, with high rates of resistance to different drugs, including ciprofloxacin (71.4%). A wide diversity of ESBL/pAmpC enzymes, as well as E. coli phylogroups (A, B1, C, D, E, F and clade I) were found. The eight isolates (20.5%) found to conform to the ExPEC status, belonged to clones O1:H45-clade I-ST770 (CH11-552), O18:H11-A-ST93-CC168 (CH11-neg), O23:H16-B1-ST453-CC86 (CH6-31), and O83:H42-F-ST1485-CC648 (CH231-58), with the latter also complying the uropathogenic (UPEC) status. The three K. pneumoniae recovered produced CTX-M-15 and belonged to the ST307, a clone previously reported in human clinical isolates. Our study highlights the potential role of both rural and urban dogs as a reservoir of high-risk Enterobacteriaceae clones, such as the CC648 of E. coli and antimicrobial resistance traits. Within a One-Health approach, their surveillance should be a priority in the fight against antimicrobial resistance.


Author(s):  
Bruce I. Blum

Fifty years ago there were no stored-program binary electronic computers. Indeed, in the mid 1940s computer was a job description; the computer was a person. Much has happened in the ensuing half-century. whereas the motto of the 1950s was “do not bend, spindle, or mutilate,” we now have become comfortable with GUI wIMP (i.e., Graphic User Interface; windows, Icons, Mouse, and Pointers). whereas computers once were maintained in isolation and viewed through large picture windows, they now are visible office accessories and invisible utilities. whereas the single computer once was a highly prized resource, modern networks now hide even the machines’ geographic locations. Naturally, some of our perceptions have adapted to reflect these changes; however, much of our understanding remains bound to the concepts that flourished during computing’s formative years. For example, we have moved beyond thinking of computers as a giant brain (Martin 1993), but we still hold firmly to our faith in computing’s scientific foundations. The purpose of this book is to look forward and speculate about the place of computing in the next fifty years. There are many aspects of computing that make it very different from all other technologies. The development of the microchip has made digital computing ubiquitous; we are largely unaware of the computers in our wrist watches, automobiles, cameras, and household appliances. The field of artificial intelligence (AI) sees the brain as an organ with some functions that can be modeled in a computer, thereby enabling computers to exhibit “intelligent” behavior. Thus, their research seeks to extend the role of computers through applications in which they perform autonomously or act as active assistants. (For some recent overviews of AI see waldrop 1987; Crevier 1993.) In the domain of information systems, Zuboff (1988) finds that computers can both automate (routinize) and informate, that is, produce new information that serves as “a voice that symbolically renders events, objects, and processes so that they become visible, knowable, and sharable in a new way” (p. 9).


Sign in / Sign up

Export Citation Format

Share Document