scholarly journals Cranberry (Vaccinium macrocarpon) Juice Precipitate Pigmentation Is Mainly Polymeric Colors and Has Limited Impact on Soluble Anthocyanin Loss

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1788
Author(s):  
Matthew R. Dorris ◽  
Bradley W. Bolling

Anthocyanins degrade in fruit juice during storage, reducing juice color quality and depleting the health-promoting components of juice. Common water-soluble products of anthocyanins’ chemical degradation are known, but little is known about the contribution of the insoluble phase to loss processes. Cranberry juice and isolated anthocyanins were incubated at 50 °C for up to 10 days to determine polyphenol profiles and degradation rates. Anthocyanin-proanthocyanidin heteropolymers were analyzed via Matrix Assisted Laser Desorption/Ionization (MALDI)- Time of Flight (TOF) Mass Spectrometry (MS). Formation of soluble protocatechuic acid accounted for 260 ± 10% and insoluble materials for 80 ± 20% of lost soluble cyanidin-glycosides in juice, over-representations plausibly due to quercetin and (epi)catechin in cranberry juice and not observed in the values of 70 ± 20% and 16 ± 6% in the purified anthocyanin system. Loss processes of soluble peonidin-glycosides were better accounted for, where 31 ± 2% were attributable to soluble vanillic acid formation and 3 ± 1% to insoluble materials in cranberry juice and 35 ± 5% to vanillic acid formation and 1.6 ± 0.8% to insoluble materials in the purified anthocyanin system. Free anthocyanins were below quantifiable levels in precipitate, implying most anthocyanins in precipitate were polymeric colors (PCs). PCs in the precipitate included cyanidin- and peonidin-hexosides and -pentosides covalently bonded to procyanidins. Therefore, formation of cranberry juice precipitate does not deplete a large portion of soluble anthocyanins; rather, the precipitate’s pigmentation results from PCs that are also present in the soluble phase.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shabnam Javed ◽  
Zaid Mahmood ◽  
Khalid Mohammed Khan ◽  
Satyajit D. Sarker ◽  
Arshad Javaid ◽  
...  

AbstractAntifungal activity of Monothecabuxifolia methanolic extract and its various fractions were assessed against Macrophominaphaseolina, a soil-borne fungal pathogen of more than 500 vegetal species as well as rare and emerging opportunistic human pathogen. Different concentrations of methanolic extract (3.125 to 200 mg mL−1) inhibited fungal biomass by 39–45%. Isolated n-hexane, chloroform and ethyl acetate fractions suppressed fungal biomass by 32–52%, 29–50% and 29–35%, respectively. Triterpenes lupeol and lupeol acetate (1, 2) were isolated from n-hexane while betulin, β-sitosterol, β-amyrin, oleanolic acid (3–6) were isolated from chloroform fraction. Vanillic acid, protocatechuic acid, kaempferol and quercetin (7–10) were isolated from the ethyl acetate fraction and identified using various spectroscopic techniques namely mass spectroscopy and NMR. Antifungal activity of different concentrations (0.0312 to 2 mg mL−1) of the isolated compounds was evaluated and compared with the activity of a broad spectrum fungicide mancozeb. Different concentrations of mencozeb reduced fungal biomass by 83–85%. Among the isolated compounds lupeol acetate (2) was found the highest antifungal against M.phaseolina followed by betulin (3), vanillic acid (7), protocatechuic acid (8), β-amyrin (5) and oleanolic acid (6) resulting in 79–81%, 77–79%, 74–79%, 67–72%, 68–71% and 68–71%, respectively. Rest of the compounds also showed considerable antifungal activity and reduced M.phaseolina biomass by 41–64%.


2001 ◽  
Vol 675 ◽  
Author(s):  
Jeong-Seo Park ◽  
Han-Chang Kang ◽  
Kurt E. Geckeler

ABSTRACTAs [60]fullerene is a very hydrophobic macromolecule, there have been a number of attempts to make it more hydrophilic for biomedical applications. By attaching hydrophilic moieties such as poly(oxyethylene)(POE) chains and cyclodextrin molecules to [60]fullerene, novel water-soluble and biocompatible materials have been successfully prepared [1,2].The synthesis of novel macrocyclic fullerene conjugates which are water-soluble is reported. The telechelic fullerene derivatives have been prepared via addition reaction of POE-based arms with covalently bonded β-cyclodextrin (CD) to [60]fullerene. To this end, a mono-tosylated CD derivative has been prepared in pyridine and then reacted with an amino-functional POE in the presence of triethylamine. The subsequent reaction of [60]fullerene with the hydrophilic POE-conjugated CD-derivative yielded the macrofullerene after separation and purification procedures.The macrocyclic [60]fullerene derivatives obtained were soluble in water and characterized by UV-VIS and FT-IR spectroscopy as well as light scattering measurements and thermogravimetric analysis.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2813 ◽  
Author(s):  
Ariadna Bernal-Mercado ◽  
Francisco Vazquez-Armenta ◽  
Melvin Tapia-Rodriguez ◽  
Maria Islas-Osuna ◽  
Veronica Mata-Haro ◽  
...  

The objective of this study was to evaluate the effect of combining catechin, protocatechuic, and vanillic acids against planktonic growing, adhesion, and biofilm eradication of uropathogenic Escherichia coli (UPEC), as well as antioxidant agents. The minimum inhibitory concentrations (MIC) of protocatechuic, vanillic acids and catechin against the growth of planktonic bacteria were 12.98, 11.80, and 13.78 mM, respectively. Mixing 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin resulted in a synergistic effect acting as an MIC. Similarly, the minimum concentrations of phenolic compounds to prevent UPEC adhesion and biofilm formation (MBIC) were 11.03 and 7.13 mM of protocatechuic and vanillic acids, respectively, whereas no MBIC of catechin was found. However, combinations of 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin showed a synergistic effect acting as MBIC. On the other hand, the minimum concentrations to eradicate biofilms (MBEC) were 25.95 and 23.78 mM, respectively. The combination of 3.20 mM protocatechuic acid, 2.97 mM vanillic acid, and 1.72 mM catechin eradicated pre-formed biofilms. The antioxidant capacity of the combination of phenolics was higher than the expected theoretical values, indicating synergism by the DPPH•, ABTS, and FRAP assays. Effective concentrations of catechin, protocatechuic, and vanillic acids were reduced from 8 to 1378 times when combined. In contrast, the antibiotic nitrofurantoin was not effective in eradicating biofilms from silicone surfaces. In conclusion, the mixture of phenolic compounds was more effective in preventing cell adhesion and eradicating pre-formed biofilms of uropathogenic E. coli than single compounds and nitrofurantoin, and showed antioxidant synergy.


2021 ◽  
Author(s):  
Julie Becher ◽  
Samuel Beal ◽  
Susan Taylor ◽  
Katerina Dontsova ◽  
Dean Wilcox

Two major components of insensitive munition formulations, nitroguanidine (NQ) and 3-nitro-1,2,4-triazol-5-one (NTO), are highly water soluble and therefore likely to photo-transform while in solution in the environment. The ecotoxicities of NQ and NTO solutions are known to increase with UV exposure, but a detailed accounting of aqueous degradation rates, products, and pathways under different exposure wavelengths is currently lacking. We irradiated aqueous solutions of NQ and NTO over a 32-h period at three ultraviolet wavelengths and analyzed their degradation rates and transformation products. NQ was completely degraded by 30 min at 254 nm and by 4 h at 300 nm, but it was only 10% degraded after 32 h at 350 nm. Mass recoveries of NQ and its transformation products were >80% for all three wavelengths. NTO degradation was greatest at 300 nm with 3% remaining after 32 h, followed by 254 nm (7% remaining) and 350 nm (20% remaining). Mass recoveries of NTO and its transformation products were high for the first 8 h but decreased to 22–48% by 32 h. Environmental half-lives of NQ and NTO in pure water were estimated as 4 and 6 days, respectively. We propose photo-degradation pathways for NQ and NTO supported by observed and quantified degradation products and changes in solution pH.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fouad A. Ahmed ◽  
Rehab F. M. Ali

Brassicaspecies are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively.


2018 ◽  
Vol 47 (7) ◽  
pp. 3974-3982 ◽  
Author(s):  
Shanxin Xiong ◽  
Ru Wang ◽  
Shuaishuai Li ◽  
Bohua Wu ◽  
Jia Chu ◽  
...  

2016 ◽  
Vol 711 ◽  
pp. 269-276 ◽  
Author(s):  
Quoc Tri Phung ◽  
Norbert Maes ◽  
Diederik Jacques ◽  
Geert de Schutter ◽  
Guang Ye

Because of its environmental and economic benefits, part of cement is replaced by limestone fillers (LS). However, the effect of LS on the chemical degradation of cement-based materials is still unclear. In this study, accelerated leaching and carbonation were applied on cement pastes to study the effects of LS replacement on the degradation rates and microstructural alterations of degraded materials. Ammonium nitrate solution was used to accelerate the leaching process, while carbonation was speeded up by applying an elevated pressure gradient of pure CO2 on samples with 65% relative humidity. The carbonation rate was characterized by phenolphthalein carbonation depth and CO2 uptake, while leaching rate was quantified by phenolphthalein leaching depth and Ca-leached amount. Leached/carbonated samples were analyzed by a series of post-analysis techniques to characterize the microstructural and mineralogical changes. Results showed that, for a similar w/c ratio, a higher LS replacement resulted in lower leaching rate. For carbonation, LS replacement promoted the CO2 uptake despite similar carbonation depth. Furthermore, LS replacement led to less C-S-H carbonation compared to samples without LS.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Irina Volf ◽  
Ioana Ignat ◽  
Mariana Neamtu ◽  
Valentin Popa

AbstractThe thermal stability (60°C, 80°C, 100°C), antioxidant activity, and ultraviolet C light (UV-C) stability of standard polyphenols solutions (catechin, gallic acid, and vanillic acid) and of vegetal extracts from spruce bark and grape seeds were investigated. Exposure of the standard solutions and vegetal extracts to high temperatures revealed that phenolic compounds were also relatively stable (degradations ranged from 15 % to 30 % after 4 h of exposure). The highest antioxidant activity was obtained for ascorbic acid and gallic acid followed by catechin and caffeic acid and the grape seeds. The results show that, after 3 h of UV-C exposure, approximately 40 % of vanillic acid, 50 % of gallic acid, and 83 % of catechin were removed. Similar degradation rates were observed for vegetal extracts, with the exception of the degradation of catechin (40 %) from grape seeds. In addition, the photo-oxidation of polyphenols in the presence of food constituents such as citric acid, ascorbic acid, sodium chloride, and sodium nitrate was assessed.


Sign in / Sign up

Export Citation Format

Share Document