scholarly journals Influence of the Physical State of Spray-Dried Flavonoid-Inulin Microparticles on Oxidative Stability of Lipid Matrices

Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 520 ◽  
Author(s):  
Guibeth Morelo ◽  
Begoña Giménez ◽  
Gloria Márquez-Ruiz ◽  
Francisca Holgado ◽  
Patricio Romero-Hasler ◽  
...  

The effect of the physical state of flavonoid-inulin microparticles (semi-crystalline/amorphous) on the oxidative stability of lipid matrices was studied. Epicatechin (E) and quercetin (Q) microparticles with inulin were formulated at two infeed temperatures (15 °C and 90 °C) by spray drying. X-ray diffraction analyses showed that flavonoid-inulin microparticles obtained at feed temperature of 15 °C were semi-crystalline (E-In-15, 61.2% and Q-In-15, 60%), whereas those at 90 °C were amorphous (Q-In-90, 1.73 and Q-In-90 2.30%). Semi-crystalline state of flavonoid-inulin microparticles enhanced the EE (68.8 and 67.8% for E and Q, respectively) compared to amorphous state (41.6 and 51.1% for E and Q, respectively). However, amorphous Q-microparticles showed the highest antioxidant activity both in methyl linoleate and sunflower oil, increasing the induction period and decreasing the polar compounds and polymer triglyceride formation during long-term oxidation study. Therefore, the physical state of spray-dried flavonoid-inulin microparticles may determine their antioxidant activity in lipid matrices.

2020 ◽  
Vol 21 (16) ◽  
pp. 5935 ◽  
Author(s):  
Seda Arioglu-Tuncil ◽  
Adrienne L. Voelker ◽  
Lynne S. Taylor ◽  
Lisa J. Mauer

Thiamine is an essential micronutrient, but delivery of the vitamin in supplements or foods is challenging because it is unstable under heat, alkaline pH, and processing/storage conditions. Although distributed as a crystalline ingredient, thiamine chloride hydrochloride (TClHCl) likely exists in the amorphous state, specifically in supplements. Amorphous solids are generally less chemically stable than their crystalline counterparts, which is an unexplored area related to thiamine delivery. The objective of this study was to document thiamine degradation in the amorphous state. TClHCl:polymer dispersions were prepared by lyophilizing solutions containing TClHCl and amorphous polymers (pectin and PVP (poly[vinylpyrrolidone])). Samples were stored in controlled temperature (30–60 °C) and relative humidity (11%) environments for 8 weeks and monitored periodically by X-ray diffraction (to document physical state) and HPLC (to quantify degradation). Moisture sorption, glass transition temperature (Tg), intermolecular interactions, and pH were also determined. Thiamine was more labile in the amorphous state than the crystalline state and when present in lower proportions in amorphous polymer dispersions, despite increasing Tg values. Thiamine was more stable in pectin dispersions than PVP dispersions, attributed to differences in presence and extent of intermolecular interactions between TClHCl and pectin. The results of this study can be used to control thiamine degradation in food products and supplements to improve thiamine delivery and decrease rate of deficiency.


2000 ◽  
Vol 663 ◽  
Author(s):  
G.R. Lumpkin ◽  
R.C. Ewing ◽  
C.T. Williams ◽  
A.N. Mariano

ABSTRACTNumerous studies of pyrochlore group minerals have been completed over the previous 15 years, providing researchers in the field of nuclear waste disposal with a large body of data relevant to the behavior of these minerals in natural systems. The information obtained from studies of natural pyrochlore is applicable to the formulation of diverse waste form compositions and provides data for the assessment of the long-term behavior. Although resistant to dissolution, pyrochlore is subject to chemical alteration by ion exchange with hydrothermal fluids and low temperature ground water; however, Th and U are generally immobile and are retained in the structure. X-ray diffraction, TEM, EXAFS-XANES, and other techniques have been employed in studies of radiation damage. These studies reveal the classic sequence of damage microstructures with increasing dose and provide details about the structure of the amorphous state. Furthermore, the radiation damage studies are now complemented by data relating to the thermal histories of some of the host rocks.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1074
Author(s):  
Wei Zhou ◽  
Yun Zhang ◽  
Ruyi Li ◽  
Shengfeng Peng ◽  
Roger Ruan ◽  
...  

Thymol has been applied as a spice and antibacterial agent in commercial products. However, the utilization of thymol in the food and pharmaceutical field has recently been limited by its poor water solubility and stability. In this work, a caseinate-stabilized thymol nanosuspension was fabricated by pH-driven methods to overcome those limitations. Firstly, the chemical stability of thymol at different pH value conditions was investigated. The physiochemical properties of thymol nanosuspensions were then characterized, such as average particle size, zeta potential, encapsulation efficiency, and loading capacity. Meanwhile, the X-ray diffraction results showed that thymol was present as an amorphous state in the nanosuspensions. The thermal stability of thymol was slightly enhanced by encapsulation through this process, and the thymol nanosuspensions were stable during the long-term storage, and the average particle size of nanosuspensions showed that there was no aggregation of nanosuspensions during storage and high temperature. Finally, the antimicrobial activity of thymol nanosuspensions was evaluated by investigating the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Salmomella enterca, Staphlococcus aureus, Escherichia coli, and Listeria monocytogenes. These results could provide useful information and implications for promoting the application of thymol in food, cosmetic, and pharmaceutical commercial products.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2105
Author(s):  
Minghua Wang ◽  
Yael Rosenberg ◽  
Moshe Rosenberg

The effects of wall composition and heat treatment on the formation and properties of core-in-wall emulsions (CIWEs) consisting of whey protein-coated milkfat (AMF) droplets and a dispersion of non-fat milk solids (MSNF) were investigated. Microcapsules were prepared by spray drying these CIWEs. The d3.2 of the CIWEs ranged from 0.36 to 0.54 μm. Surface excess of the CIWEs ranged from 1.39 to 6.57 mg/m2, and was influenced by concentration of whey proteins and heat treatment (30 min at 90 °C). Results indicated a preferential adsorption of β-lg at the O/W interface. Whey proteins accounted for up to 90% of the proteins adsorbed at the O/W interface. The core retention during spray drying ranged from 90.3% to 97.6% and microencapsulation efficiency ranged from 77.9% to 93.3%. The microcapsules exhibited an excellent long-term oxidative stability at 20 and 30 °C that was superior to that of microcapsules consisting of milkfat and MSNF, where the O/W interface was populated mainly by caseins. The superior oxidative stability could be attributed to the formation of dense whey-proteins-based films at the O/W interfaces of the CIWEs that isolated the core domains from the environment. The results open new opportunities in developing highly stable lipids-containing microcapsules and dairy powders.


2018 ◽  
Vol 69 (3) ◽  
pp. 688-692
Author(s):  
Lucian Nita ◽  
Dorin Tarau ◽  
Gheorghe Rogobete ◽  
Simona Nita ◽  
Radu Bertici ◽  
...  

The issue addressed relates to an area of 1891694 ha of which 1183343 ha are agricultural land (62, 56) located in the south-west of Romania and refer to the use of soil chemical and physical properties as an acceptor for certain crop systems, with minimal undesirable effects both for plants to be grown, as well as soil characteristics and groundwater surface quality. It is therefore necessary on a case-by-case basis, measure stoc or rect the acidic reaction by periodic or alkaline calculations, the improvement of plant nutrition conditions through ameliorative fertilization and the application of measures to improve the physical state, sufficient justification for the need to develop short and long term strategies for the protection and conservation of edifying factors and the need to respect the frequency of field and laboratory investigations at all 8x8 km grids of the National Soil-Grounds Monitoring System (organized by I.C.P.A.) and completing it with the relevant pedological and agrochemical studies.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Emilia Drozłowska ◽  
Artur Bartkowiak ◽  
Paulina Trocer ◽  
Mateusz Kostek ◽  
Alicja Tarnowiecka-Kuca ◽  
...  

The objective of the study was to investigate the application of flaxseed oil cake extract (FOCE) for oxidative stabilization of flaxseed oil in spray-dried emulsions. Two variants of powders with 10% and 20% of flaxseed oil (FO), FOCE, and wall material (maltodextrin and starch Capsul®) were produced by spray-drying process at 180 °C. The oxidative stability of FO was monitored during four weeks of storage at 4 °C by peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) measurements. Additionally, the fatty acids content (especially changes in α-linolenic acid content), radical scavenging activity, total polyphenolics content, color changes and free amino acids content were evaluated. Obtained results indicated that FOCE could be an adequate antioxidant dedicated for spray-dried emulsions, especially with a high content of FO (20%). These results have important implications for the flaxseed oil encapsulation with natural antioxidant agents obtained from plant-based agro-industrial by product, meeting the goals of circular economy and the idea of zero waste.


2020 ◽  
Vol 9 (1) ◽  
pp. 998-1008
Author(s):  
Guo Li ◽  
Zheng Zhuang ◽  
Yajun Lv ◽  
Kejin Wang ◽  
David Hui

AbstractThree nano-CaCO3 (NC) replacement levels of 1, 2, and 3% (by weight of cement) were utilized in autoclaved concrete. The accelerated carbonation depth and Coulomb electric fluxes of the hardened concrete were tested periodically at the ages of 28, 90, 180, and 300 days. In addition, X-ray diffraction, thermogravimetry, and mercury intrusion porosimetry were also performed to study changes in the hydration products of cement and microscopic pore structure of concrete under autoclave curing. Results indicated that a suitable level of NC replacement exerts filling and accelerating effects, promotes the generation of cement hydration products, reduces porosity, and refines the micropores of autoclaved concrete. These effects substantially enhanced the carbonation and chloride resistance of the autoclaved concrete and endowed the material with resistances approaching or exceeding that of standard cured concrete. Among the three NC replacement ratios, the 3% NC replacement was the optimal dosage for improving the long-term carbonation and chloride resistance of concrete.


Sign in / Sign up

Export Citation Format

Share Document