scholarly journals Microcapsules Consisting of Whey Proteins-Coated Droplets of Lipids Embedded in Wall Matrices of Spray-Dried Microcapsules Consisting Mainly of Non-Fat Milk Solids

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2105
Author(s):  
Minghua Wang ◽  
Yael Rosenberg ◽  
Moshe Rosenberg

The effects of wall composition and heat treatment on the formation and properties of core-in-wall emulsions (CIWEs) consisting of whey protein-coated milkfat (AMF) droplets and a dispersion of non-fat milk solids (MSNF) were investigated. Microcapsules were prepared by spray drying these CIWEs. The d3.2 of the CIWEs ranged from 0.36 to 0.54 μm. Surface excess of the CIWEs ranged from 1.39 to 6.57 mg/m2, and was influenced by concentration of whey proteins and heat treatment (30 min at 90 °C). Results indicated a preferential adsorption of β-lg at the O/W interface. Whey proteins accounted for up to 90% of the proteins adsorbed at the O/W interface. The core retention during spray drying ranged from 90.3% to 97.6% and microencapsulation efficiency ranged from 77.9% to 93.3%. The microcapsules exhibited an excellent long-term oxidative stability at 20 and 30 °C that was superior to that of microcapsules consisting of milkfat and MSNF, where the O/W interface was populated mainly by caseins. The superior oxidative stability could be attributed to the formation of dense whey-proteins-based films at the O/W interfaces of the CIWEs that isolated the core domains from the environment. The results open new opportunities in developing highly stable lipids-containing microcapsules and dairy powders.

Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 520 ◽  
Author(s):  
Guibeth Morelo ◽  
Begoña Giménez ◽  
Gloria Márquez-Ruiz ◽  
Francisca Holgado ◽  
Patricio Romero-Hasler ◽  
...  

The effect of the physical state of flavonoid-inulin microparticles (semi-crystalline/amorphous) on the oxidative stability of lipid matrices was studied. Epicatechin (E) and quercetin (Q) microparticles with inulin were formulated at two infeed temperatures (15 °C and 90 °C) by spray drying. X-ray diffraction analyses showed that flavonoid-inulin microparticles obtained at feed temperature of 15 °C were semi-crystalline (E-In-15, 61.2% and Q-In-15, 60%), whereas those at 90 °C were amorphous (Q-In-90, 1.73 and Q-In-90 2.30%). Semi-crystalline state of flavonoid-inulin microparticles enhanced the EE (68.8 and 67.8% for E and Q, respectively) compared to amorphous state (41.6 and 51.1% for E and Q, respectively). However, amorphous Q-microparticles showed the highest antioxidant activity both in methyl linoleate and sunflower oil, increasing the induction period and decreasing the polar compounds and polymer triglyceride formation during long-term oxidation study. Therefore, the physical state of spray-dried flavonoid-inulin microparticles may determine their antioxidant activity in lipid matrices.


2020 ◽  
Vol 20 (6) ◽  
pp. 3598-3603 ◽  
Author(s):  
Yingying Ma ◽  
Jin Gao ◽  
Wankui Jia ◽  
Yangyang Liu ◽  
Lanying Zhang ◽  
...  

Spray-drying and freeze-drying are effective approaches to improve the long-term stability of nanosuspensions. This research explored the effect of spray-drying and freeze-drying techniques on PVP K30-stabilized silybin nanosuspensions. The morphology was observed by scanning electron microscopy (SEM): The spray-dried sample was spherical, and the freeze-dried samples were rodlike with smooth surfaces. The redispersibility was studied via dynamic light scattering (DLS): The size, PDI, and zeta of the spray-dried sample were 133.27 nm, 0.214, and 24.37 mV, respectively; the size, PDI, and zeta of the freeze-dried sample were 298.70 nm, 0.114, and 20.98 mV, respectively. The in vitro dissolution was studied, and the two dry powders showed a significant increase compared to silybin. The two dried powders had better long-term stability than the liquid starting material. Overall, spray-drying and freeze-drying are appropriate drying methods for the preparation of silybin nanosuspensions with better stability and dissolution velocity.


1979 ◽  
Vol 42 (2) ◽  
pp. 149-152 ◽  
Author(s):  
FERNANDO ESPINA ◽  
V. S. PACKARD

A frozen concentrate of Lactobacillus acidophilus was used as inoculum for milk solids-not-fat (MSNF) reconstituted to 25 and 40% solids. Initial count of the two milks was 1.2 × 109 and 7.0 × 108 CFU/g of solids, respectively. Sublots of these two concentrates were spray-dried at 85-, 80-, and 75-C exit air temperature in a Coulter/Townley pilot dryer (vertical, venturi nozzle spray system). Survival of L. acidophilus was greatest at the lowest outlet air temperature investigated, and in the milk of lower solids content. At 75-C exit air temperature the count following drying was 2.6 × 107 per gram of solids at 40 percent solids, and 9.8 × 107 per gram of solids at 25% solids. Percent survival after 30 days storage under nitrogen at 4 C was 1.29 and 4.17, respectively, for the two solids levels.


2008 ◽  
pp. 119-130 ◽  
Author(s):  
V. Senchagov

The core of Russia’s long-term socio-economic development strategy is represented by its conceptual basis. Having considered debating points about the essence and priority of the strategy, the author analyzes the logic and stages of its development as well as possibilities, restrictions and risks of high GDP rates of growth.


Author(s):  
Kusuma P. ◽  
Syukri Y ◽  
Sholehuddin F. ◽  
Fazzri N. ◽  
Romdhonah . ◽  
...  

The most efficient tablet processing method is direct compression. For this method, the filler-binder can be made by coprocessing via spray drying method. The purpose of this study was to investigate the effect of spray dried co-processing on microcrystalline cellulose (MCC) PH 101, lactose and Kollidon® K 30 as well as to define the optimum proportions. Spray dried MCC PH 101, lactose, and Kollidon® K 30 were varied in 13 different mixture design proportions to obtain compact, free-flowing filler-binder co-processed excipients (CPE). Compactibility and flow properties became the key parameters to determine the optimum proportions of CPE that would be compared to their physical mixtures. The result showed that the optimum proportion of CPE had better compactibility and flow properties than the physical mixtures. The optimum CPE, consisting of only MCC PH 101 and Kollidon® K 30 without lactose, that were characterized using infrared spectrophotometer, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM) indicated no chemical change therein. Therefore, this study showed that spray dried MCC PH 101, lactose and Kollidon® K 30 could be one of the filler-binder alternatives for direct compression process.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 608
Author(s):  
Csilla Bartos ◽  
Patrícia Varga ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

The absorption of non-steroidal anti-inflammatory drugs (NSAIDs) through the nasal epithelium offers an innovative opportunity in the field of pain therapy. Thanks to the bonding of chitosan to the nasal mucosa and its permeability-enhancing effect, it is an excellent choice to formulate microspheres for the increase of drug bioavailability. The aim of our work includes the preparation of spray-dried cross-linked and non-cross-linked chitosan-based drug delivery systems for intranasal application, the optimization of spray-drying process parameters (inlet air temperature, pump rate), and the composition of samples. Cross-linked products were prepared by using different amounts of sodium tripolyphosphate. On top of these, the micrometric properties, the structural characteristics, the in vitro drug release, and the in vitro permeability of the products were studied. Spray-drying resulted in micronized chitosan particles (2–4 μm) regardless of the process parameters. The meloxicam (MEL)-containing microspheres showed nearly spherical habit, while MEL was present in a molecularly dispersed state. The highest dissolved (>90%) and permeated (~45 µg/cm2) MEL amount was detected from the non-cross-linked sample. Our results indicate that spray-dried MEL-containing chitosan microparticles may be recommended for the development of a novel drug delivery system to decrease acute pain or enhance analgesia by intranasal application.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Emilia Drozłowska ◽  
Artur Bartkowiak ◽  
Paulina Trocer ◽  
Mateusz Kostek ◽  
Alicja Tarnowiecka-Kuca ◽  
...  

The objective of the study was to investigate the application of flaxseed oil cake extract (FOCE) for oxidative stabilization of flaxseed oil in spray-dried emulsions. Two variants of powders with 10% and 20% of flaxseed oil (FO), FOCE, and wall material (maltodextrin and starch Capsul®) were produced by spray-drying process at 180 °C. The oxidative stability of FO was monitored during four weeks of storage at 4 °C by peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) measurements. Additionally, the fatty acids content (especially changes in α-linolenic acid content), radical scavenging activity, total polyphenolics content, color changes and free amino acids content were evaluated. Obtained results indicated that FOCE could be an adequate antioxidant dedicated for spray-dried emulsions, especially with a high content of FO (20%). These results have important implications for the flaxseed oil encapsulation with natural antioxidant agents obtained from plant-based agro-industrial by product, meeting the goals of circular economy and the idea of zero waste.


2021 ◽  
Vol 857 ◽  
pp. 158221
Author(s):  
Yu-duo Ma ◽  
Wei Li ◽  
Ming-yan Guo ◽  
Yong Yang ◽  
Yu-hang Cui ◽  
...  

LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111033
Author(s):  
Lorine Le Priol ◽  
Justine Gmur ◽  
Aurélien Dagmey ◽  
Sandrine Morandat ◽  
Karim El Kirat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document