scholarly journals Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology

Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 962
Author(s):  
Rengasamy Balakrishnan ◽  
Duk-Yeon Cho ◽  
In Su-Kim ◽  
Dong-Kug Choi

The Dendropanax genus is a kind of flowering plant in the family of Araliaceae that encompasses approximately 91 to 95 species. Several Dendropanax species are used as traditional medicinal plants, extensively used Korea and South America and other parts of the world. Almost every part of the plant, including the leaves, bark, roots, and stems, can be used as traditional medicine for the prevention and management of a broad spectrum of health disorders. This paper sought to summarizes the ethnopharmacological benefits, biological activities, and phytochemical investigations of plants from the genus Dendropanax, and perhaps to subsequently elucidate potential new perspectives for future pharmacological research to consider. Modern scientific literature suggests that plants of the Dendropanax genus, together with active compounds isolated from it, possess a wide range of therapeutic and pharmacological applications, including antifungal, anti-complement, antioxidant, antibacterial, insect antifeedant, cytotoxic, anti-inflammatory, neuroprotective, anti-diabetic, anti-cancer, and anti-hypouricemic properties. The botanical descriptions of approximately six to 10 species are provided by different scientific web sources. However, only six species, namely, D. morbiferus, D. gonatopodus, D. dentiger, D. capillaris, D. chevalieri, and D. arboreus, were included in the present investigation to undergo phytochemical evaluation, due to the unavailability of data for the remaining species. Among these plant species, a high concentration of variable bioactive ingredients was identified. In particular, D. morbifera is a traditional medicinal plant used for the multiple treatment purposes and management of several human diseases or health conditions. Previous experimental evidence supports that the D. morbifera species could be used to treat various inflammatory disorders, diarrhea, diabetes, cancer, and some microbial infections. It has recently been reported, by our group and other researchers, that D. morbifera possesses a neuroprotective and memory-enhancing agent. A total of 259 compounds have been identified among six species, with 78 sourced from five of these species reported to be bioactive. However, there is no up-to-date information concerning the D. morbifera, its different biological properties, or its prospective benefits in the enhancement of human health. In the present study, we set out to conduct a comprehensive analysis of the botany, traditional medicinal history, and medicinal resources of species of the Dendropanax genus. In addition, we explore several phytochemical constituents identified in different species of the Dendropanax genus and their biological properties. Finally, we offer comprehensive analysis findings of the phytochemistry, medicinal uses, pharmacological actions, and a toxicity and safety evaluation of the D. morbifera species and its main bioactive ingredients for future consideration.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kieran Joyce ◽  
Georgina Targa Fabra ◽  
Yagmur Bozkurt ◽  
Abhay Pandit

AbstractBiomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.


Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald Nair ◽  
Johannes Van Staden

The Amaryllidaceae features prominently amongst bulbous flowering plant families. Accommodating about a third of its species, South Africa affords a sound basis for Amaryllidaceae plant research. Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus have been well-represented in such endeavors. The account herein summarizes the studies undertaken between 2013-2020 on these genera in regards to their chemical and biological characteristics. A total of 136 compounds comprising 63 alkaloids and 73 non-alkaloid entities were described during this period from eighteen members of the title genera. The alkaloids were reflective of the structural diversity found in eight isoquinoline alkaloid groups of the Amaryllidaceae. Of these, the crinane (29 compounds), lycorane and homolycorine (11 compounds each) groups were the most-represented. The non-alkaloid substances were embracive of the same number of unrelated groups including, acids, phenolics, flavonoids and triterpenoids. A wide variety of assays were engaged to ascertain the biological activities of the isolated compounds, notably in regards to cancer and motorneuron-related diseases. There were also attempts made to determine the antimicrobial, anti-inflammatory and antioxidant effects of some of the substances. New information has also emerged on the herbicidal, insecticidal and plant growth regulatory effects of selected alkaloid principles. Coupled to the biological screening measures were in instances probes made to establish the molecular basis to some of the activities, particularly in relation to cancer and Parkinsonʹs disease.


Planta Medica ◽  
2019 ◽  
Vol 85 (17) ◽  
pp. 1304-1315 ◽  
Author(s):  
Laura González-Cofrade ◽  
Beatriz de las Heras ◽  
Luis Apaza Ticona ◽  
Olga M. Palomino

AbstractNatural products and their derivatives represent the most consistently successful source of drug leads. Terpenoids, a structurally diverse group, are secondary metabolites widely distributed in nature, endowed with a wide range of biological activities such as antibacterial, anti-inflammatory, antitumoral, or neuroprotective effects, which consolidate their therapeutic value. During the last decades, and taking into consideration the prevalence of aging-related diseases, research activity into the neuroprotective effects of these types of compounds has increased enormously. Several signaling pathways involved in neuroprotection are targets of their mechanism of action and mediate their pleiotropic protective activity in neuronal cell damage. In the present review, molecular basis of the neuroprotection exerted by terpenoids is presented, focusing on preclinical evidence of the therapeutic potential of diterpenoids and triterpenoids on neurodegenerative disorders. By acting on diverse mechanisms simultaneously, terpenoids have been emphasized as promising multitarget agents.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
Jasmine Speranza ◽  
Natalizia Miceli ◽  
Maria Fernanda Taviano ◽  
Salvatore Ragusa ◽  
Inga Kwiecień ◽  
...  

Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.


2017 ◽  
Vol 45 (05) ◽  
pp. 933-964 ◽  
Author(s):  
Chengyao Ma ◽  
Yayun Chen ◽  
Jianwei Chen ◽  
Xiang Li ◽  
Yong Chen

Annona squamosa L. (Annonaceae) is a fruit tree with a long history of traditional uses. A. squamosa is an evergreen plant mainly located in tropical and subtropical regions. Srikayas, the fruits of A. squamosa, are extensively used to prepare candies, ice creams and beverages. A wide range of ethno-medicinal uses has been related to different portions of A. squamosa, such as tonic, apophlegmatisant, cool medicine, abortient and heart sedative. Numerous research projects on A. squamosa have found that it has anticancer, anti-oxidant, antidiabetic, antihypertensive, hepatoprotective, antiparasitic, antimalarial, insecticidal, microbicidel and molluscicidal activities. Phytochemistry investigations on A. squamosa have considered annonaceous acetogenins (ACGs), diterpenes (DITs), alkaloids (ALKs) and cyclopeptides (CPs) as the main constituents. Until 2016, 33 DITs, 19 ALKs, 88 ACGs and 13 CPs from this species were reported. On the basis of the multiple researches on A. squamosa, this review strives to integrate available information on its phytochemicals, folklore uses and bioactivities, hoping to promote a better understanding of its medicinal values.


2019 ◽  
Vol 10 (2) ◽  
pp. 83-87
Author(s):  
Yury V. Petrenko ◽  
Ksenia S. Gerasimova ◽  
Valeria P. Novikova

Adipose tissue is now recognized as an important endocrine organ that secretes numerous protein hormones, including leptin, adiponectin, and resistin. Adiponectin is a hormone that is produced by white adipose tissue. Adiponectin has been isolated independently by several groups of scientists. In humans, this protein is encoded by the ADIPOQ gene. Adiponectin receptors are widely distributed in many organs and tissues including liver, heart, pancreas, kidneys, muscles and many other cell types. A serum concentration of adipocin correlates with body mass index (BMI). Decreased level of adiponectin leads to obesity, the development of gestational complications in pregnant women, as well as a high risk of diabetes mellitus development and atherosclerosis. A high concentration of this hormone has anti-inflammatory, antiatherogenic, antiproliferative and cancer-defense mechanisms. Adiponectin strongly suppresses hepatic gluconeogenesis by inhibiting genes involved in glucose production. Obese people have lower blood levels of adiponectin than normal weight individuals. Adiponectin’s anti-inflammatory and anti-apoptotic properties result in protection of the blood vessels, heart, lungs, and colon. Adiponectin, an abundant adipocyte-secreted factor with a wide-range of biological activities, improves insulin sensitivity in insulin target tissues, modulates inflammatory responses, and plays a crucial role in the regulation of energy metabolism.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Getsial Sabatini Wallace J ◽  
S. Naveen Kumar ◽  
V. Negasta Smila ◽  
T. Nivitha ◽  
Stalin Nithaniyal ◽  
...  

Moringa is a medicinally important genus that has long history of traditional use as a remedy to cure wounds and various ailments such as colds, diabetes, digestive problems etc. In addition, the species is consumed as a source of nutritive food and used as vegetables worldwide. The genus consists of 13 species that have been cultivated throughout Asia and Africa for their multiple purpose use value. The current study is aimed to validate the traditional medicinal uses of Moringa oleifera, provide scientific insights on the phytochemistry, biological activities and thereby correlating its therapeutic potential for future prospects. Analysis of phytochemical profile showed the presence of the major important bioactive compounds (saponin, tannin, flavonoids, phenolics, and reducing sugar) that were assessed in aqueous, methanolic aqueous and acetone-aqueous extracts following standard procedures. This study provides the foundation to explore the tribal medicinal use complemented with the scientific evaluation. Our study reinforce further phytochemical study with advanced technologies for future research opportunities of this species as it is an interesting plant containing commercially important active compounds that enable to determine pharmacological significance, and socio-economic potential.


Author(s):  
Nieves Baenas ◽  
Jenny Ruales ◽  
Diego A. Moreno ◽  
Daniel Alejandro Barrio ◽  
Carla M. Stinco ◽  
...  

Andean blueberries are wild berries grown and consumed in Ecuador which contain high values of bioactive compounds, mainly anthocyanins, with powerful antioxidant activity. The aim of this study was to evaluate the profile and contents of (poly)phenols and carotenoids in Andean blueberry by HPLC-DAD-MSn and determine a wide range of its biological activities. The antioxidant capacity of this fruit was evaluated in vitro by three different methods and in vivo using the zebrafish animal model, also the toxicity effect was determined by the zebrafish embryogenesis test. Besides, the antimicrobial activity and the capacity of Andean blueberry to produce hemagglutination in blood cells were evaluated. Finally, the bioaccessibility of (poly)phenols and related antioxidant capacity were determined in the different phases of an in vitro digestion. The global results indicated no toxicity of Andean blueberry, weakly bacteriostatic activity, and high contents of anthocyanins and antioxidant capacity, which were partially bioaccesible in vitro (~ 50 % at the final intestinal step), contributing to the knowledge of its health benefits for consumers and its potential use in the food and pharmaceutical industry as functional ingredient.


Author(s):  
Hiram Hernández-López ◽  
Christian Jairo Tejada-Rodríguez ◽  
Socorro Leyva-Ramos

Abstract: The therapeutic potential of the benzimidazole nucleus dates back to 1944, being and important heterocycle system due to its presence in a wide range of bioactive compounds such as antiviral, anticancer, antibacterial, and so on, where optimization of substituents in this class of pharmacophore has resulted in many drugs. Its extensive biological activity is due to its physicochemical properties like hydrogen bond donor-acceptor capability,  stacking interactions, coordination bonds with metals as ligands and hydrophobic interactions; properties that allow them to easily bind with a series of biomolecules, including enzymes and nucleic acids, causing a growing interest in these types of molecules. This review aims to present an overview to leading benzimidazole derivatives, as well as to show the importance of the nature and type of substituents at the N1, C2, and C5(6) positions, when they are biologically evaluated, which can lead to obtaining potent drug candidate with significant range of biological activities.


Toxins ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 69 ◽  
Author(s):  
Carolina Nicolau ◽  
Alyson Prorock ◽  
Yongde Bao ◽  
Ana Neves-Ferreira ◽  
Richard Valente ◽  
...  

Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components) are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map) approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7) followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic), and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1) antimicrobial activity; (2) treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy); (3) treatment of cardiovascular diseases, and (4) anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic) and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document