scholarly journals Development of a Prediction Model for Tractor Axle Torque during Tillage Operation

2020 ◽  
Vol 10 (12) ◽  
pp. 4195 ◽  
Author(s):  
Wan-Soo Kim ◽  
Yong-Joo Kim ◽  
Seung-Yun Baek ◽  
Seung-Min Baek ◽  
Yeon-Soo Kim ◽  
...  

In general, the tractor axle torque is used as an indicator for making various decisions when engineers perform transmission fatigue life analysis, optimal design, and accelerated life testing. Since the existing axle torque measurement method requires an expensive torque sensor, an alternative method is required. Therefore, the aim of this study is to develop a prediction model for the tractor axle torque during tillage operation that can replace expensive axle torque sensors. A prediction model was proposed through regression analysis using key variables affecting the tractor axle torque. The engine torque, engine speed, tillage depth, slip ratio, and travel speed were selected as explanatory variables. In order to collect explanatory and dependent variable data, a load measurement system was developed, and a field experiment was performed on moldboard plow tillage using a tractor with a load measurement system. A total of eight axle torque prediction regression models were proposed using the measured calibration dataset. The adjusted coefficient of determination (R2) of the proposed regression model showed a range of 0.271 to 0.925. Among them, the prediction model E showed an adjusted R2 of 0.925. All of the prediction models were verified using a validation set. All of the axle torque prediction models showed an mean absolute percentage error (MAPE) of less than 2.8%. In particular, Model E, adopting engine torque, engine speed, and travel speed as variables, and Model H, adopting engine torque, tillage depth and travel speed as variables, showed MAPEs of 1.19 and 1.30%, respectively. Therefore, it was found that the proposed prediction models are applicable to actual axle torque prediction.

2014 ◽  
Vol 31 (3) ◽  
pp. 639-646 ◽  
Author(s):  
Abayomi Isiaka Yussuff ◽  
Nor Hisham Haji Khamis

Abstract Lagos, Nigeria (6.35°N, 3.2°E), is a coastal station in the rain forest area of southwestern Nigeria with an altitude of 38 m. Since most communication now takes place above the X band because of congestion of lower bands, it was necessary to look into ways of maximizing X-band usage. There are inadequate data for use in rain propagation studies at microwave frequencies, and even less so at millimeter wave bands where most of the signal depolarization and fading has been discovered to exist. The proposed model is a modification of the International Telecommunication Union–Radio Communication Sector (ITU-R) model combined with locally obtained regression coefficients for estimating specific attenuation as proposed by G. Olalere Ajayi. The Dissanayake, Allnutt, and Haidara (DAH), Simple Attenuation Model (SAM), and ITU-R attenuation prediction models were investigated along with the proposed model. The ITU-R model was observed to produce the best results at 40 GHz, with percentage error values of 0.61%, 0.55%, and 0.49% at 0.1%, 0.01%, and 0.001% of the time, respectively. In comparison, the proposed prediction model showed good performance at 20-GHz down-link frequency, with percentage error values of 3.6%, 3.3%, and 2.9% at 0.1%, 0.01%, and 0.001% of the time, respectively. The obtained results also showed good agreement with other similar works in the open literature. The results presented in this work are valuable for the design and planning of a satellite link in the tropical regions.


2020 ◽  
pp. 002029402098140
Author(s):  
Jiale Ding ◽  
Guochu Chen ◽  
Yongmin Huang ◽  
Zhiquan Zhu ◽  
Kuo Yuan ◽  
...  

In this paper, a short-term wind speed prediction model, called CEEMDAN-SE-Improved PIO-GRNN, is proposed to optimize the accuracy of the short-term wind speed forecast. This model is established on account of the optimized General Regression Neural Network (GRNN) method optimized by three algorithms, which are Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Sample Entropy (SE), and Pigeon Inspired Optimization (PIO), separately. Firstly, decomposing the original wind speed sequences into several subsequences with different complexity by CEEMDAN. Then, the complexity of each subsequence is judged by SE and the similar subsequences are combined into a new sequence to reduce the scale of calculation. Afterwards, the GRNN model optimized by improved PIO is used to predict each new sequence. Finally, the predicted results are superposed as the eventual predicted value. Implementing the prediction for the wind speed data of a wind field in north China within 30 days by applying the different prediction models, namely, GRNN, CEEMDAN-GRNN, Improved PIO-GRNN, and CEEMDAN-SE-Improved PIO-GRNN which are proposed in this paper. Comparing the prediction curves of different models with the fitting curve of the actual wind speed shows that the optimal fitting effect and minimum error value are included in CEEMDAN-SE-Improved PIO-GRNN model. Specifically, the values of mean squared error (MSE), mean absolute error (MAE) and weighted mean absolute percentage error (WMAPE) separately decrease by 0.6222, 0.3334, and 8.5766%, which compare with the single prediction model GRNN. Meanwhile, diebold-mariano (DM) test shows that the prediction ability of the two models is significantly different. The above statements indicate the proposed model does great advance in the precision of short-term wind speed prediction.


2020 ◽  
Vol 63 (6) ◽  
pp. 1773-1786 ◽  
Author(s):  
Wan-Soo Kim ◽  
Yeon-Soo Kim ◽  
Yong-Joo Kim

HighlightsA prediction model was developed for estimating the axle torque of an agricultural tractor.The model was developed by complementing and modifying a previously proposed traction equation.Compared to the actual axle torque, the proposed model attained MAPE of 2.1%, RMSE of 29 Nm, and RD of 2.7%.The model predicted axle torque more accurately than the traction force-based prediction model.Abstract. The tractor driving axle torque is an important factor in optimal transmission design and service life evaluation. Axle torque measurement sensor systems are very expensive, and traction force-based axle torque prediction models cannot accurately estimate the axle torque because they do not consider both the conditions of the tractor and the attached implement. Therefore, in this study, a prediction model was developed to estimate the axle torque of an agricultural tractor based on the traction force equation and motion resistance. A load measurement system was established to verify the developed prediction model, and actual field torque data were collected through field tests. The developed prediction model was verified by comparing the results of five reference prediction methods, including weight, engine-rated torque, and three traction equations (Wismer-Luth, ASABE Standard D497.4, and Brixius), using the measured axle torque. Performance evaluation was conducted based on the main variables, including travel speed, tillage depth, and slip ratio. The proposed prediction model was found to be closest to the 1:1 line at all travel speeds, tillage depths, and slip ratios, implying that it can best explain the measured torque values among all prediction models. Compared to the other prediction models, the proposed prediction model’s results under all variable conditions had an R2 of 0.65, MAPE of 2.1%, RMSE of 29 Nm, and RD of 2.7%, indicating excellent prediction of the measured torque. The results show that the developed prediction model can be applied to axle torque prediction by explaining the actual measured axle torque. Keywords: Agricultural tractor, Axle torque, Prediction model, Torque estimation, Traction force.


2013 ◽  
Vol 853 ◽  
pp. 600-604 ◽  
Author(s):  
Yu Ren Wang ◽  
Wen Ten Kuo ◽  
Shian Shien Lu ◽  
Yi Fan Shih ◽  
Shih Shian Wei

There are several nondestructive testing techniques available to test the compressive strength of the concrete and the Rebound Hammer Test is among one of the fast and economical methods. Nevertheless, it is found that the prediction results from Rebound Hammer Test are not satisfying (over 20% mean absolute percentage error). In view of this, this research intends to develop a concrete compressive strength prediction model for the SilverSchmidt test hammer, using data collected from 838 lab tests. The Q-values yield from the concrete test hammer SilverSchmidt is set as the input variable and the concrete compressive strength is set as the output variable for the prediction model. For the non-linear relationships, artificial intelligence technique, Support Vector Machines (SVMs), are adopted to develop the prediction models. The results show that the mean absolute percentage errors for SVMs prediction model, 6.76%, improves a lot when comparing to SilverSchmidt predictions. It is recommended that the artificial intelligence prediction models can be applied in the SilverSchmidt tests to improve the prediction accuracy.


2020 ◽  
Vol 26 (33) ◽  
pp. 4195-4205
Author(s):  
Xiaoyu Ding ◽  
Chen Cui ◽  
Dingyan Wang ◽  
Jihui Zhao ◽  
Mingyue Zheng ◽  
...  

Background: Enhancing a compound’s biological activity is the central task for lead optimization in small molecules drug discovery. However, it is laborious to perform many iterative rounds of compound synthesis and bioactivity tests. To address the issue, it is highly demanding to develop high quality in silico bioactivity prediction approaches, to prioritize such more active compound derivatives and reduce the trial-and-error process. Methods: Two kinds of bioactivity prediction models based on a large-scale structure-activity relationship (SAR) database were constructed. The first one is based on the similarity of substituents and realized by matched molecular pair analysis, including SA, SA_BR, SR, and SR_BR. The second one is based on SAR transferability and realized by matched molecular series analysis, including Single MMS pair, Full MMS series, and Multi single MMS pairs. Moreover, we also defined the application domain of models by using the distance-based threshold. Results: Among seven individual models, Multi single MMS pairs bioactivity prediction model showed the best performance (R2 = 0.828, MAE = 0.406, RMSE = 0.591), and the baseline model (SA) produced the most lower prediction accuracy (R2 = 0.798, MAE = 0.446, RMSE = 0.637). The predictive accuracy could further be improved by consensus modeling (R2 = 0.842, MAE = 0.397 and RMSE = 0.563). Conclusion: An accurate prediction model for bioactivity was built with a consensus method, which was superior to all individual models. Our model should be a valuable tool for lead optimization.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.


2001 ◽  
Vol 10 (2) ◽  
pp. 241 ◽  
Author(s):  
Jon B. Marsden-Smedley ◽  
Wendy R. Catchpole

An experimental program was carried out in Tasmanian buttongrass moorlands to develop fire behaviour prediction models for improving fire management. This paper describes the results of the fuel moisture modelling section of this project. A range of previously developed fuel moisture prediction models are examined and three empirical dead fuel moisture prediction models are developed. McArthur’s grassland fuel moisture model gave equally good predictions as a linear regression model using humidity and dew-point temperature. The regression model was preferred as a prediction model as it is inherently more robust. A prediction model based on hazard sticks was found to have strong seasonal effects which need further investigation before hazard sticks can be used operationally.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 285
Author(s):  
Kwok Tai Chui ◽  
Brij B. Gupta ◽  
Pandian Vasant

Understanding the remaining useful life (RUL) of equipment is crucial for optimal predictive maintenance (PdM). This addresses the issues of equipment downtime and unnecessary maintenance checks in run-to-failure maintenance and preventive maintenance. Both feature extraction and prediction algorithm have played crucial roles on the performance of RUL prediction models. A benchmark dataset, namely Turbofan Engine Degradation Simulation Dataset, was selected for performance analysis and evaluation. The proposal of the combination of complete ensemble empirical mode decomposition and wavelet packet transform for feature extraction could reduce the average root-mean-square error (RMSE) by 5.14–27.15% compared with six approaches. When it comes to the prediction algorithm, the results of the RUL prediction model could be that the equipment needs to be repaired or replaced within a shorter or a longer period of time. Incorporating this characteristic could enhance the performance of the RUL prediction model. In this paper, we have proposed the RUL prediction algorithm in combination with recurrent neural network (RNN) and long short-term memory (LSTM). The former takes the advantages of short-term prediction whereas the latter manages better in long-term prediction. The weights to combine RNN and LSTM were designed by non-dominated sorting genetic algorithm II (NSGA-II). It achieved average RMSE of 17.2. It improved the RMSE by 6.07–14.72% compared with baseline models, stand-alone RNN, and stand-alone LSTM. Compared with existing works, the RMSE improvement by proposed work is 12.95–39.32%.


2021 ◽  
Vol 14 (7) ◽  
pp. 333
Author(s):  
Shilpa H. Shetty ◽  
Theresa Nithila Vincent

The study aimed to investigate the role of non-financial measures in predicting corporate financial distress in the Indian industrial sector. The proportion of independent directors on the board and the proportion of the promoters’ share in the ownership structure of the business were the non-financial measures that were analysed, along with ten financial measures. For this, sample data consisted of 82 companies that had filed for bankruptcy under the Insolvency and Bankruptcy Code (IBC). An equal number of matching financially sound companies also constituted the sample. Therefore, the total sample size was 164 companies. Data for five years immediately preceding the bankruptcy filing was collected for the sample companies. The data of 120 companies evenly drawn from the two groups of companies were used for developing the model and the remaining data were used for validating the developed model. Two binary logistic regression models were developed, M1 and M2, where M1 was formulated with both financial and non-financial variables, and M2 only had financial variables as predictors. The diagnostic ability of the model was tested with the aid of the receiver operating curve (ROC), area under the curve (AUC), sensitivity, specificity and annual accuracy. The results of the study show that inclusion of the two non-financial variables improved the efficacy of the financial distress prediction model. This study made a unique attempt to provide empirical evidence on the role played by non-financial variables in improving the efficiency of corporate distress prediction models.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6460
Author(s):  
Dae-Yeon Kim ◽  
Dong-Sik Choi ◽  
Jaeyun Kim ◽  
Sung Wan Chun ◽  
Hyo-Wook Gil ◽  
...  

In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.


Sign in / Sign up

Export Citation Format

Share Document