scholarly journals A Novel Grid and Place Neuron’s Computational Modeling to Learn Spatial Semantics of an Environment

2020 ◽  
Vol 10 (15) ◽  
pp. 5147
Author(s):  
Rahul Shrivastava ◽  
Prabhat Kumar ◽  
Sudhakar Tripathi ◽  
Vivek Tiwari ◽  
Dharmendra Singh Rajput ◽  
...  

Health-related limitations prohibit a human from working in hazardous environments, due to which cognitive robots are needed to work there. A robot cannot learn the spatial semantics of the environment or object, which hinders the robot from interacting with the working environment. To overcome this problem, in this work, an agent is computationally devised that mimics the grid and place neuron functionality to learn cognitive maps from the input spatial data of an environment or an object. A novel quadrant-based approach is proposed to model the behavior of the grid neuron, which, like the real grid neuron, is capable of generating periodic hexagonal grid-like output patterns from the input body movement. Furthermore, a cognitive map formation and their learning mechanism are proposed using the place–grid neuron interaction system, which is meant for making predictions of environmental sensations from the body movement. A place sequence learning system is also introduced, which is like an episodic memory of a trip that is forgettable based on their usage frequency and helps in reducing the accumulation of error during a visit to distant places. The model has been deployed and validated in two different spatial data learning applications, one being the 2D object detection by touch, and another is the navigation in an environment. The result analysis shows that the proposed model is significantly associated with the expected outcomes.

2019 ◽  
Vol 95 (12) ◽  
pp. 1145-1149
Author(s):  
Galina V. Kurenkova ◽  
E. P. Lemeshevskaya

Tunnels are an integral part of the ways and artificial constructions of the railway. Objective assessment of working conditions is important, because current regulations fail to allow to give a definite hygienic assessment of some factors of the production environment of the tunnels. Objective: to reveal the peculiarities of the formation of working conditions in railway tunnels with the subsequent hygienic assessment for the development of preventive measures. Measurement of the factors of working process and working environment is carried out with the use of the certified equipment for the approved the hygienic and sanitary-chemical methods in workplaces in tunnels of the East-Siberian railway. Specific conditions were shown to be formed due to constructive solutions, climate and geographical location, the length of railway tunnels, the composition of the rocks through which the tunnel, the nature of the maintenance tunnels, ventilation system, repetition rate and type of passing rolling stock. All employees from occupational groups from examined tunnels were established to be exposed to high concentrations of aerosols with predominantly fibrogenic action, noise levels, adverse climate (low positive and negative temperatures, high relative humidity and mobility of air), the lack of natural lighting, low levels of artificial light, hard exertion of labor (dynamic physical load, working position, the slopes of the body, movement in space). Additionally, high levels of the vibration, nonionizing and ionizing radiation were typical for jobs of the Baikal and the North-Muya tunnel. There is proposed the algorithm of hygienic assessment of the microclimate, light environment at the working places depending on the time of the works in the underground conditions and constructional features of tunnels, methods of accounting personnel dose rates from natural sources.


2021 ◽  
pp. 107754632199361
Author(s):  
Yong Song ◽  
Chong Zhang ◽  
Zhanlong Li ◽  
Yue Li ◽  
Jinyi Lian ◽  
...  

Inspired by the body movement of the kangaroo, a multi-degree-of-freedom vibration isolation platform containing three units, that is, a protected object, a nonlinear energy sink, and an X-shaped structure, has been modeled, and the differential equations of the system have been given in the form of uniform relative coordinates. Furthermore, the displacement transmissibility analysis and numerical calculation are supported by the method of harmonic balance and Runge–Kutta algorithm, which shows that (a) there are nonlinear behaviors and resonant phenomenon in the time–frequency response and (b) quasi-periodic motion may be a predictor of periodic steady-state response or strong resonance, and the displacement evolution before quasi-periodic motion may be used to distinguish the two phenomena. In addition, based on the numerical method, the system energy changes in a selected frequency are discussed. Finally, the correctness of the theoretical analysis is verified by simulation data in Adams. Taken together, these results demonstrate that the dynamic characteristics are adjustable and designable of structural parameters in a specific frequency band and can provide a useful way to reduce the amplitude of resonant peaks and improve the vibration isolation performance for practical engineering applications.


2020 ◽  
Vol 2020 (17) ◽  
pp. 2-1-2-6
Author(s):  
Shih-Wei Sun ◽  
Ting-Chen Mou ◽  
Pao-Chi Chang

To improve the workout efficiency and to provide the body movement suggestions to users in a “smart gym” environment, we propose to use a depth camera for capturing a user’s body parts and mount multiple inertial sensors on the body parts of a user to generate deadlift behavior models generated by a recurrent neural network structure. The contribution of this paper is trifold: 1) The multimodal sensing signals obtained from multiple devices are fused for generating the deadlift behavior classifiers, 2) the recurrent neural network structure can analyze the information from the synchronized skeletal and inertial sensing data, and 3) a Vaplab dataset is generated for evaluating the deadlift behaviors recognizing capability in the proposed method.


Author(s):  
Daiane Sofia Morais Paulino ◽  
Maira Pinho-Pompeu ◽  
Fernanda Raikov ◽  
Juliana Vasconcellos Freitas-Jesus ◽  
Helymar Costa Machado ◽  
...  

Abstract Objective To evaluate the influence of health-related behaviors including food intake, physical activity, sleep time, smoking habits, stress, depression, and optimism on excessive gestational weight gain (GWG) among women with overweight and obesity. Methods A cross-sectional study was conducted at the Women's Hospital of the Universidade de Campinas, Campinas, state of São Paulo, Brazil, with 386 mediate postpartum women that fit the inclusion criteria of ≥ 19 years old, first prenatal care visit at or before 14 weeks, and single live baby. Dietary habits, physical exercise practice, sleep duration, smoking and alcohol habits were self-reported. Psychosocial history was evaluated using the Edinburgh Postpartum Depression Scale (EPDS), Perceived Stress Scale (PSS), and Life Orientation Test-Revised (LOT-R). Sociodemographic, obstetric, anthropometric, and neonatal data were retrieved from medical records. Descriptive statistics and stepwise logistic regression were performed. Results The prevalence of overweight and obesity was 29.27% and 24.61%, respectively, according to the body mass index (BMI). Excessive GWG was observed in 47.79% of women with overweight and in 45.26% of women with obesity. Excessive GWG among overweight and obese women was associated with inadequate vegetable and bean consumption (odds ratio [OR] = 2.95, 95% confidence interval [CI]: 1.35–6.46 and OR = 1.91; 95%CI: 1.01–3.63, respectively) and stress (OR = 1.63; 95%CI 1.01–2.64). After adjustment by maternal age, multiparity, sleep duration, smoking, and alcohol intake, we found that stress (PSS ≥ 20) was associated with excessive GWG in women with overweight or obesity (OR: 1.75; 95%CI: 1.03–2.96). Conclusion Among women with overweight and obesity, stress is the main variable associated with excessive GWG. Inadequate vegetables and beans consumption also showed association with excessive GWG.


Pulmonology ◽  
2021 ◽  
Author(s):  
Jhonatan Betancourt-Peña ◽  
Juan Carlos Ávila-Valencia ◽  
Diana Milena Diaz-Vidal ◽  
Vicente Benavides-Córdoba

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3771
Author(s):  
Alexey Kashevnik ◽  
Walaa Othman ◽  
Igor Ryabchikov ◽  
Nikolay Shilov

Meditation practice is mental health training. It helps people to reduce stress and suppress negative thoughts. In this paper, we propose a camera-based meditation evaluation system, that helps meditators to improve their performance. We rely on two main criteria to measure the focus: the breathing characteristics (respiratory rate, breathing rhythmicity and stability), and the body movement. We introduce a contactless sensor to measure the respiratory rate based on a smartphone camera by detecting the chest keypoint at each frame, using an optical flow based algorithm to calculate the displacement between frames, filtering and de-noising the chest movement signal, and calculating the number of real peaks in this signal. We also present an approach to detecting the movement of different body parts (head, thorax, shoulders, elbows, wrists, stomach and knees). We have collected a non-annotated dataset for meditation practice videos consists of ninety videos and the annotated dataset consists of eight videos. The non-annotated dataset was categorized into beginner and professional meditators and was used for the development of the algorithm and for tuning the parameters. The annotated dataset was used for evaluation and showed that human activity during meditation practice could be correctly estimated by the presented approach and that the mean absolute error for the respiratory rate is around 1.75 BPM, which can be considered tolerable for the meditation application.


Author(s):  
Lisa Domegan ◽  
Patricia Garvey ◽  
Paul McKeown ◽  
Howard Johnson ◽  
Paul Hynds ◽  
...  

Abstract Background Geocoding (the process of converting a text address into spatial data) quality may affect geospatial epidemiological study findings. No national standards for best geocoding practice exist in Ireland. Irish postcodes (Eircodes) are not routinely recorded for infectious disease notifications and > 35% of dwellings have non-unique addresses. This may result in incomplete geocoding and introduce systematic errors into studies. Aims This study aimed to develop a reliable and reproducible methodology to geocode cryptosporidiosis notifications to fine-resolution spatial units (Census 2016 Small Areas), to enhance data validity and completeness, thus improving geospatial epidemiological studies. Methods A protocol was devised to utilise geocoding tools developed by the Health Service Executive’s Health Intelligence Unit. Geocoding employed finite-string automated and manual matching, undertaken sequentially in three additive phases. The protocol was applied to a cryptosporidiosis notification dataset (2008–2017) from Ireland’s Computerised Infectious Disease Reporting System. Outputs were validated against devised criteria. Results Overall, 92.1% (4266/4633) of cases were successfully geocoded to one Small Area, and 95.5% (n = 4425) to larger spatial units. The proportion of records geocoded increased by 14% using the multiphase approach, with 5% of records re-assigned to a different spatial unit. Conclusions The developed multiphase protocol improved the completeness and validity of geocoding, thus increasing the power of subsequent studies. The authors recommend capturing Eircodes ideally using application programming interface for infectious disease or other health-related datasets, for more efficient and reliable geocoding. Where Eircodes are not recorded/available, for best geocoding practice, we recommend this (or a similar) quality driven protocol.


2004 ◽  
Vol 91 (4) ◽  
pp. 1524-1535 ◽  
Author(s):  
Grégoire Courtine ◽  
Marco Schieppati

We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in numerous gait descriptors. Principal component analysis (PCA) was used to uncover the spatiotemporal structure of coordination among lower limb segments. PCA revealed that the same kinematic law accounted for the coordination among lower limb segments during both straight-ahead and curved walking, in both the frontal and sagittal planes: turn-related changes in the complex behavior of the inner and outer limbs were captured in limb-specific adaptive tuning of coordination patterns. PCA was also performed on a data set including all elevation angles of limb segments and trunk, thus encompassing 13 degrees of freedom. The results showed that both straight-ahead and curved walking were low dimensional, given that 3 principal components accounted for more than 90% of data variance. Furthermore, the time course of the principal components was unchanged by curved walking, thereby indicating invariant coordination patterns among all body segments during straight-ahead and curved walking. Nevertheless, limb- and turn-dependent tuning of the coordination patterns encoded the adaptations of the limb kinematics to the actual direction of the walking body. Absence of vision had no significant effect on the intersegmental coordination during either straight-ahead or curved walking. Our findings indicate that kinematic laws, probably emerging from the interaction of spinal neural networks and mechanical oscillators, subserve the production of both straight-ahead and curved walking. During locomotion, the descending command tunes basic spinal networks so as to produce the changes in amplitude and phase relationships of the spinal output, sufficient to achieve the body turn.


1963 ◽  
Vol 40 (1) ◽  
pp. 23-56 ◽  
Author(s):  
RICHARD BAINBRIDGE

1. Observations made on bream, goldfish and dace swimming in the ‘Fish Wheel’ apparatus are described. These include: 2. An account of the complex changes in curvature of the caudal fin during different phases of the normal locomotory cycle. Measurements of this curvature and of the angles of attack associated with it are given. 3. An account of changes in area of the caudal fin during the cycle of lateral oscillation. Detailed measurements of these changes, which may involve a 30 % increase in height or a 20 % increase in area, are given. 4. An account of the varying speed of transverse movement of the caudal fin under various conditions and the relationship of this to the changes in area and amount of bending. Details of the way this transverse speed may be asymmetrically distributed relative to the axis of progression of the fish are given. 5. An account of the extent of the lateral propulsive movements in other parts of the body. These are markedly different in the different species studied. Measurements of the wave length of this movement and of the rate of progression of the wave down the body are given. 6. It is concluded that the fish has active control over the speed, the amount of bending and the area of the caudal fin during transverse movement. 7. The bending of the fin and its changes in area are considered to be directed to the end of smoothing out and making more uniform what would otherwise be an intermittent thrust from the oscillating tail region. 8. Some assessment is made of the proportion of the total thrust contributed by the caudal fin. This is found to vary considerably, according to the form of the lateral propulsive movements of the whole body, from a value of 45% for the bream to 84% for the dace.


Sign in / Sign up

Export Citation Format

Share Document