scholarly journals Printability of the Screen-Printed Strain Sensor with Carbon Black/Silver Paste for Sensitive Wearable Electronics

2020 ◽  
Vol 10 (19) ◽  
pp. 6983
Author(s):  
Xue Qi ◽  
Heebo Ha ◽  
Byungil Hwang ◽  
Sooman Lim

Printing technology enables not only high-volume, multipurpose, low-impact, low-cost manufacturing, but also the introduction of flexible electronic devices, such as displays, actuators, and sensors, to a wide range of consumer markets. Consequently, in the past few decades, printed electronic products have attracted considerable interest. Although flexible printed electronic products are attracting increasing attention from the scientific and industrial communities, a systematic study on their sensing performance based on printability has not been reported so far. In this study, carbon black/Ag nanocomposites were utilized as pastes for a flexible wearable strain sensor. The effects of the rheological property of the pastes and the pattern dimensions of the printed electrodes on the sensor’s performance were investigated. Consequently, the printed sensor demonstrated a high gauge factor of 444.5 for an applied strain of 0.6% to 1.4% with a durability of 1000 cycles and a linearity of R2 = 0.9974. The sensor was also stable under tough environmental conditions.

2019 ◽  
Vol 16 (3) ◽  
pp. 117-123
Author(s):  
Tsung-Ching Huang ◽  
Ting Lei ◽  
Leilai Shao ◽  
Sridhar Sivapurapu ◽  
Madhavan Swaminathan ◽  
...  

Abstract High-performance low-cost flexible hybrid electronics (FHE) are desirable for applications such as internet of things and wearable electronics. Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for high-performance FHE because of its high carrier mobility, superior mechanical flexibility, and material compatibility with low-cost printing and solution processes. Flexible sensors and peripheral CNT-TFT circuits, such as decoders, drivers, and sense amplifiers, can be printed and hybrid-integrated with thinned (<50 μm) silicon chips on soft, thin, and flexible substrates for a wide range of applications, from flexible displays to wearable medical devices. Here, we report (1) a process design kit (PDK) to enable FHE design automation for large-scale FHE circuits and (2) solution process-proven intellectual property blocks for TFT circuits design, including Pseudo-Complementary Metal-Oxide-Semiconductor (Pseudo-CMOS) flexible digital logic and analog amplifiers. The FHE-PDK is fully compatible with popular silicon design tools for design and simulation of hybrid-integrated flexible circuits.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1814 ◽  
Author(s):  
Jian Wang ◽  
Ryuki Suzuki ◽  
Kentaro Ogata ◽  
Takuto Nakamura ◽  
Aixue Dong ◽  
...  

Flexible and wearable electronics have huge potential applications in human motion detection, human–computer interaction, and context identification, which have promoted the rapid development of flexible sensors. So far the sensor manufacturing techniques are complex and require a large number of organic solvents, which are harmful not only to human health but also to the environment. Here, we propose a facile solvent-free preparation toward a flexible pressure and stretch sensor based on a hierarchical layer of graphene nanoplates. The resulting sensor exhibits many merits, including near-linear response, low strain detection limits to 0.1%, large strain gauge factor up to 36.2, and excellent cyclic stability withstanding more than 1000 cycles. Besides, the sensor has an extraordinary pressure range as large as 700 kPa. Compared to most of the reported graphene-based sensors, this work uses a completely environmental-friendly method that does not contain any organic solvents. Moreover, the sensor can practically realize the delicate detection of human body activity, speech recognition, and handwriting recognition, demonstrating a huge potential for wearable sensors.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Fernando Martinez ◽  
Gregorio Obieta ◽  
Ion Uribe ◽  
Tomasz Sikora ◽  
Estibalitz Ochoteco

The design and characterization of polymer-based self-standing flexible strain sensors are presented in this work. Properties as lightness and flexibility make them suitable for the measurement of strain in applications related with wearable electronics such as robotics or rehabilitation devices. Several sensors have been fabricated to analyze the influence of size and electrical conductivity on their behavior. Elongation and applied charge were precisely controlled in order to measure different parameters as electrical resistance, gauge factor (GF), hysteresis, and repeatability. The results clearly show the influence of size and electrical conductivity on the gauge factor, but it is also important to point out the necessity of controlling the hysteresis and repeatability of the response for precision-demanding applications.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Rajeshwar S. Bobade

Abstract Conducting polymers (CPs) provide a class of processible, film forming semiconductors and metals. Electrical and optical properties of CPs, similar to those of metals and semiconductors, and the attractive properties associated with conventional polymers such as ease of synthesis and processing, has given these polymers a wide range of applications in the microelectronics industry, in biological field and also as humidity, chemical and mechanical sensors. The principal interest in the use of polymers lies in the scope for low cost manufacturing. Organic polymers offer several advantages over analogous inorganic semiconductors, the most important of which are the processability and the large surface film technology together with the possibility of tuning the polymer properties through a chemical design of the constituent units. In contrast, problems of environmental stability and the inability to process these into useful devices constitute the main drawbacks of organic materials. To set a material suitable for applications in various technological fields one has to improve the processability, mechanical strength and environmental stability of the polyheterocycles: one method adopted to do this is synthesizing the composites of conducting polymers within a matrix of insulating polymers. In this paper, the science of conducting polymers will be discussed. A review from literature on selected applications of organic devices based on conducting polythiophene and its composites will be discussed with a view to targeting the areas of future research in this topic.


Author(s):  
William J. Grande

Microchannel devices with channel widths in the range from one micron to several hundred microns have become increasingly important structures for heat transfer applications. This paper will examine several classes of fabrication technologies that are employed in the field. Established technologies, such as bulk and surface micromachining, high aspect ratio machining, and conventional machining have been perfected over the last several decades and are the principal methods of creating microchannel structures. Synthesizing technologies, such as wafer bonding and micromolding techniques, allow these primary structures to be assembled together into working devices or enable high volume, low cost manufacturing using microstructured masters. Established and synthesizing technologies have reached a high level of performance and are generally the subject of refinement efforts rather than innovative investigations. Active research into new materials, processes, and fabrication strategies are found in the class of emerging technologies. This paper will briefly review the dimensional spectrum of microchannels and survey the established and synthesizing technologies. Then an exploration of emerging technologies will be made. The topic of rapid prototyping will be given particular emphasis.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3465
Author(s):  
Jianli Cui ◽  
Xueli Nan ◽  
Guirong Shao ◽  
Huixia Sun

Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human–machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures. This work is based on the use of a three-dimensional elastic porous carbon nanotubes (CNTs) sponge as the conductive layer to fabricate a novel flexible piezoresistive sensor. The synthesis of a CNTs sponge was achieved by chemical vapor deposition, the basic underlying principle governing the sensing behavior of the CNTs sponge-based pressure sensor and was illustrated by employing in situ scanning electron microscopy. The CNTs sponge-based sensor has a quick response time of ~105 ms, a high sensitivity extending across a broad pressure range (less than 10 kPa for 809 kPa−1) and possesses an outstanding permanence over 4,000 cycles. Furthermore, a 16-pixel wireless sensor system was designed and a series of applications have been demonstrated. Its potential applications in the visualizing pressure distribution and an example of human–machine communication were also demonstrated.


Author(s):  
Mohammad Abshirini ◽  
Mohammad Charara ◽  
Mrinal C. Saha ◽  
M. Cengiz Altan ◽  
Yingtao Liu

Abstract Flexible and sensitive strain sensors can be utilized as wearable sensors and electronic devices in a wide range of applications, such as personal health monitoring, sports performance, and electronic skin. This paper presents the fabrication of a highly flexible and sensitive strain sensor by 3D printing an electrically conductive polydimethylsiloxane (PDMS)/multi-wall carbon nanotube (MWNT) nanocomposite on a PDMS substrate. To maximize the sensor’s gauge factor, the effects of MWNT concentration on the strain sensing function in nanocomposites are evaluated. Critical 3D printing and curing parameters, such as 3D printing nozzle diameter and nanocomposites curing temperature, are explored to achieve the highest piezoresistive response, showing that utilizing a smaller deposition nozzle size and higher curing temperature can result in a higher gauge factor. The optimized 3D printed nanocomposite sensor’s sensitivity is characterized under cyclic tensile loads at different maximum strains and loading rates. A linear piezoresistive response is observed up to 70% strain with an average gauge factor of 12, pointing to the sensor’s potential as a flexible strain sensor. In addition, the sensing function is almost independent of the applied load rate. The fabricated sensors are attached to a glove and used as a wearable sensor by detecting human finger and wrist motion. The results indicate that this 3D printed functional nanocomposite shows promise in a broad range of applications, including wearable and skin mounted sensors.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4553 ◽  
Author(s):  
Yun Xia ◽  
Qi Zhang ◽  
Xue E. Wu ◽  
Tim V. Kirk ◽  
Xiao Dong Chen

Presented is a flexible capacitive strain sensor, based on the low cost materials silicone (PDMS) and carbon black (CB), that was fabricated by casting and curing of successive silicone layers—a central PDMS dielectric layer bounded by PDMS/CB blend electrodes and packaged by exterior PDMS films. It was effectively characterized for large flexion-angle motion wearable applications, with strain sensing properties assessed over large strains (50%) and variations in temperature and humidity. Additionally, suitability for monitoring large tissue deformation was established by integration with an in vitro digestive model. The capacitive gauge factor was approximately constant at 0.86 over these conditions for the linear strain range (3 to 47%). Durability was established from consistent relative capacitance changes over 10,000 strain cycles, with varying strain frequency and elongation up to 50%. Wearability and high flexion angle human motion detection were demonstrated by integration with an elbow band, with clear detection of motion ranges up 90°. The device’s simple structure and fabrication method, low-cost materials and robust performance, offer promise for expanding the availability of wearable sensor systems.


Author(s):  
SAPTAK BHATTACHERJEE ◽  
Sananda Chatterjee ◽  
Subhasis Bhaumik

Abstract Large deflection sensing is highly crucial for proper positioning and control of continuum robots during robot assisted minimally invasive surgery. Existing techniques suffer from eletromagnetic noise susceptibility, harmful radiation exposure, limited range, bio-incompatibility and necessity of expensive instruments. In the present study, we propose a Multi-Walled Carbon Nano-Tube (MWCNT)/polyglycerol based low cost, flexible and biocompatible sensor which could allow safer, faster and accurate angular deflection measurement of continuum robots for biomedical applications. Experimental results demonstrate that the sensor is stretchable upto 100% , provides a gauge factor upto 11.65, have response time around 8 ms, durability of -0.14% for cyclic loading and unloading and show very small creep upto ±0.0008 ( ±2.88%). Furthermore, the sensor can measure continuum robot deflection upto ±150 o with a sensitivity of 666.67 ohms/degree, with a maximum error of 1.67% and maximum hysteresis of 1.41%. Thus, wide range, low cost, fast response, and biocompatibility justify the potential of the proposed sensor for large deflection sensing of continuum robots during robot assisted minimally invasive surgery.


2014 ◽  
Vol 62 (4) ◽  
pp. 759-763 ◽  
Author(s):  
S. Walczak ◽  
M. Sibiński

Abstract The paper presents a comparative analysis of two types of flexible temperature sensors, made of carbon-based nanostructures composites. These sensors were fabricated by a low-cost screen-printing method, which qualifies them to large scale, portable consumer electronic products. Results of examined measurements show the possibility of application for thick film devices, especially dedicated to wearable electronics, also known as a textronics. Apart from general characterisation, the influence of technological processes on specific sensor parameters were examined, particulary the value of the temperature coefficient of resistance (TCR) and its stability during the device bending.


Sign in / Sign up

Export Citation Format

Share Document