scholarly journals Neuroprotective Effect of Membrane-Free Stem Cell Extract against Amyloid Beta 25–35-Induced Neurotoxicity in SH-SY5Y Cells

2021 ◽  
Vol 11 (5) ◽  
pp. 2219
Author(s):  
Hye Sook Park ◽  
Qi Qi Pang ◽  
Young Sil Kim ◽  
Ji Hyun Kim ◽  
Eun Ju Cho

Amyloid beta (Aβ) produced by the amyloidogenic pathway induces neurotoxicity, and its accumulation is a well-known cause of Alzheimer’s disease (AD). In this study, the protective effect of membrane-free stem cell extract (MFSCE) derived from adipose tissue against Aβ25–35-induced neurotoxicity in the neuronal cells was investigated. Treatment with MFSCE increased cell viability and decreased lactate dehydrogenase (LDH) release in a dose-dependent manner, compared with the Aβ25–35-induced group. The level of reactive oxygen species (ROS) was significantly increased in neuronal cells induced by Aβ25–35, whereas MFSCE treatment dose-dependently reduced ROS production. Treatment with MFSCE attenuated neuroinflammation and neuronal apoptosis by downregulating inducible nitric oxide synthase, cyclooxygenase-2, and B-cell lymphoma 2-associated X protein in treated SH-SY5Y cells induced by Aβ25–35. Furthermore, MFSCE significantly downregulated the expression of the amyloidogenic pathway-related proteins, such as amyloid precursor protein, β-secretase, preselin-1, and preselin-2. Therefore, this study indicated a neuroprotective effect of MFSCE against neurotoxicity induced by Aβ25–35, suggesting that it is a useful strategy for the treatment of AD.

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 142 ◽  
Author(s):  
Caiyun Zhang ◽  
Xingming Zhao ◽  
Shiqi Lin ◽  
Fangyuan Liu ◽  
Jiahui Ma ◽  
...  

ent-Kaur-15-en-17-al-18-oic acid, extracted from the Chinese well known folk herb Leontopodium longifolium, performed a significantly neuroprotective effect on amyloid beta peptide 25-35 (Aβ25-35)-induced SH-SY5Y cells neurotoxicity in Alzheimer’s disease. The results demonstrated that this compound maintained oxidative stress balance, reduced levels of reactive oxygen species (ROS), malondialdehyde (MDA), and improved contents of glutathione (GSH) and superoxide dismutase (SOD) without obvious cytotoxicity. This compound also obviously relieved oxidative stress-induced apoptosis associated with p53 and nuclear factor κB (NF-κB) pathways accompanied by upregulating B-cell lymphoma-2 (bcl-2) and downregulating p53, nuclear factor κB (NF-κB), Bax, Cleaved-caspase 3, and Cytochrome C protein expressions further. Briefly, ent-kaur-15-en-17-al-18-oic acid protected cells from oxidative apoptosis associated with p53 and NF-κB pathways.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bo Kyung Lee ◽  
Yi-Sook Jung

Oxidative stress plays an important role in the pathophysiology of various neurologic disorders.Allium cepaextract (ACE) and their main flavonoid component quercetin (QCT) possess antioxidant activities and protect neurons from oxidative stress. We investigated the underlying molecular mechanisms, particularly those linked to the antioxidant effects of the ACE. Primary cortical neuronal cells derived from mouse embryos were preincubated with ACE or QCT for 30 min and exposed to L-buthionine sulfoximine for 4~24 h. We found that ACE and QCT significantly decreased neuronal death and the ROS increase induced by L-buthionine-S, R-sulfoximine (BSO) in a concentration-dependent manner. Furthermore, ACE and QCT activated extracellular signal-regulated kinase 1/2 (ERK1/2), leading to downregulation of protein kinase C-ε(PKC-ε) in BSO-stimulated neuronal cells. In addition, ACE and QCT decreased the phosphorylated levels of p38 mitogen-activated protein kinase. Our results provide new insight into the protective mechanism of ACE and QCT against oxidative stress in neuronal cells. The results suggest that the inactivation of PKC-εinduced by phosphorylating ERK1/2 is responsible for the neuroprotective effect of ACE and QCT against BSO-induced oxidative stress.


Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 47-53 ◽  
Author(s):  
Wenyong Pan ◽  
Zhigang Cao ◽  
Dongyang Liu ◽  
Yingbin Jiao

Background: Traumatic brain injury (TBI) is considered a major burden across the globe affecting both individuals and their families. Therefore, the present study was conducted to determine the protective effect of diphenhydramine (DPM) against TBI in experimental rats. Methods: The effect of DPM was evaluated on the cerebral edema (CE) and neuronal degeneration after the induction of experimental brain injury in rats. The effect of DPM was also investigated on the inflammatory cytokines, for example, tumor necrosis factor-α and interleukin 1β and oxidative stress markers, such as malondialdehyde, superoxide dismutase, and glutathione peroxidase. Western blot analysis was used to investigate the effect of DPM on B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and cleaved caspase-3. Results: Results of the study suggest that DPM causes reduction in CE and prevents neuronal degeneration. It also causes reduction in inflammation and oxidative stress in a dose-dependent manner. The level of Bax was found to be elevated, together with reduction in the Bcl-2 level in the DPM-treated group. Conclusion: DPM exerts a neuroprotective effect after TBI via the attenuation of oxidative stress, inflammation, and mitochondrial apoptosis pathways.


2019 ◽  
Vol 97 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Peiliang Dong ◽  
Xiaomeng Ji ◽  
Wei Han ◽  
Hua Han

Amyloid beta 42 (Aβ1–42)-induced oxidative stress causes the death of neuronal cells and is involved in the development of Alzheimer’s disease. Oxymatrine (OMT) inhibits oxidative stress. In this study, we investigated the effect of OMT on Aβ1–42-induced neurotoxicity in vivo and in vitro. In the Morris water maze test, OMT significantly decreased escape latency and increased the number of platform crossings. In vitro, OMT markedly increased cell viability and superoxide dismutase activity. Moreover, OMT decreased lactate dehydrogenase leakage, malondialdehyde content, and reactive oxygen species in a dose-dependent manner. OMT upregulated the ratio of Bcl-2/Bax and downregulated the level of caspase-3. Furthermore, OMT inhibited the activation of MAP kinase (ERK 1/2, JNK) and nuclear factor κB. In summary, OMT may potentially be used in the treatment of Alzheimer’s disease.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1630 ◽  
Author(s):  
Kirsten Strømme Kierulf-Vieira ◽  
Cecilie Jonsgar Sandberg ◽  
Jo Waaler ◽  
Kaja Lund ◽  
Erlend Skaga ◽  
...  

Evidence suggests that the growth and therapeutic resistance of glioblastoma (GBM) may be enabled by a population of glioma stem cells (GSCs) that are regulated by typical stem cell pathways, including the WNT/β-catenin signaling pathway. We wanted to explore the effect of treating GSCs with a small-molecule inhibitor of tankyrase, G007-LK, which has been shown to be a potent modulator of the WNT/β-catenin and Hippo pathways in colon cancer. Four primary GSC cultures and two primary adult neural stem cell cultures were treated with G007-LK and subsequently evaluated through the measurement of growth characteristics, as well as the expression of WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Treatment with G007-LK decreased in vitro proliferation and sphere formation in all four primary GSC cultures in a dose-dependent manner. G007-LK treatment altered the expression of key downstream WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Finally, cotreatment with the established GBM chemotherapeutic compound temozolomide (TMZ) led to an additive reduction in sphere formation, suggesting that WNT/β-catenin signaling may contribute to TMZ resistance. These observations suggest that tankyrase inhibition may serve as a supplement to current GBM therapy, although more work is needed to determine the exact downstream mechanisms involved.


2017 ◽  
Vol 63 (2) ◽  
pp. 326-328
Author(s):  
Larisa Filatova ◽  
Yevgeniya Kharchenko ◽  
Sergey Alekseev ◽  
Ilya Zyuzgin ◽  
Anna Artemeva ◽  
...  

Currently there is no single approach to treatment for aggressive diffuse large-cell B-cell lymphoma (Double-HIT and Triple-HIT). Accumulated world data remain controversial and, given the unfavorable prognosis in this subgroup, high-dose chemotherapy with autologous stem cell transplantation in the first line of treatment is a therapeutic option.


2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document