scholarly journals Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine

2021 ◽  
Vol 11 (7) ◽  
pp. 2936
Author(s):  
Francesco Petrosino ◽  
Mattia Barbarino ◽  
Martin Staggat

Hybrid electric propulsion is a promising solution to reduce aircraft emissions, thus improving the sustainability of the air transport. In this work, a hybrid aircraft configuration with a rear-mounted boundary layer ingestion (BLI) engine has been investigated. The partial embedding of the engine into the fuselage generates a distortion of the ingested inflow causing additional tonal and broadband BLI noise sources, and, at the same time, alters the existing one, such as the rotor–stator interaction noise (RSI). This work is focused on the tonal RSI noise modeling, with and without the distortion generated by the BLI, and the far-field propagation including the acoustic masking contribution due to the engine–fuselage integration. As the main result, this work shows the contributions of BLI and the engine–aircraft integration on the RSI noise. Both effects should be properly taken into account in the early aircraft design stage for an effective noise reduction even at ground level.

2017 ◽  
Vol 12 ◽  
pp. 104
Author(s):  
Petra Skolilova

The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs) are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 56
Author(s):  
José Serrano Cruz ◽  
Andrés Tiseira ◽  
Luis García-Cuevas ◽  
Pau Varela

Distributed electric propulsion and boundary layer ingestion are two attractive technologies to reduce the power consumption of fixed wing aircraft. Through careful distribution of the propulsive system elements, higher aerodynamic and propulsive efficiency can be achieved, as well as a lower risk of total loss of aircraft due to foreign object damage. When used on the wing, further reductions of the bending moment on the wing root can even lead to reductions of its structural weight, thus mitigating the expected increase of operating empty weight due to the extra components needed. While coupling these technologies in fixed-wing aircraft is being actively studied in the big aircraft segment, it is also an interesting approach for increasing the efficiency even for aircraft with maximum take-off masses as low as 25 kg, such as the A3 open subcategory for civil drones from EASA. This paper studies the effect of changing the propellers’ position in the aerodynamic performance parameters of a distributed electric propulsion with boundary layer ingestion system in a 25 kg fixed-wing aircraft, as well as in the performance of the propellers. The computational results show the trade-offs between the aerodynamic efficiency and the propeller efficiency when the vertical position is varied.


Author(s):  
Florence Nyssen ◽  
Alain Batailly

Abstract In this work, the impact of small mistuning on rotor/stator contact interactions is investigated. First, a detailed study of a rotor/stator interaction between the first bending modes and the second engine order is presented in the tuned case. Then, a numerical investigation on the effect of mistuning on the studied rotor/stator contact interaction is carried out. In particular, a stochastic analysis is performed to evaluate the robustness of the interaction with respect to the mistuning level. Simulations are conducted using a reduced order model (ROM) of an industrial bladed disk that combines both physical degrees of freedom (along blades tip for contact treatment) and modal coordinates. Mistuning is introduced in the tuned ROM by means of a modified version of the component mode mistuning method that allows to keep physical degrees of freedom within the reduced basis. Nonlinear amplification factors, i.e. the amplification factors in the context of contact nonlinearities, are compared with their linear counterparts, the latter are computed using a linear forcing on each blade using a two nodal diameters traveling wave excitation on the mistuned and the tuned bladed disk. The comparison between the linear and nonlinear amplification factor for each sample highlights that no correlation exists between a mistuning pattern leading to high amplifications in a linear context or when contact nonlinearities are taken into account. Therefore, dedicated analyses on the effect of mistuning should be undertaken with contact nonlinearities considerations at the design stage especially if intentional mistuning is considered.


2015 ◽  
Vol 798 ◽  
pp. 596-601
Author(s):  
R.F. Francisco Reis ◽  
Guilherme A. Santana ◽  
Paulo Iscold ◽  
Carlos A. Cimini

This paper will present the development of a simple subsonic boundary layer method suitable to be used coupled with panel methods in order to estimate the aerodynamic characteristics, including viscous drag and maximum lift coefficient, of 3D wings. The proposed method does not require viscous-inviscid iterations and is based on classical integral bi-dimensional boundary layer theory using Thwaites and Head ́s models with bi-dimensional empirical corrections applied to each wing strip being therefor robust and efficient to be used in the early conceptual stage of aircraft design. Presented results are compared to the Modified CS Method in an IBL scheme and experimental data and are shown to provide good results.


2020 ◽  
Vol 237 ◽  
pp. 03012
Author(s):  
Christoph Senff ◽  
Andrew Langford ◽  
Raul Alvarez ◽  
Tim Bonin ◽  
Alan Brewer ◽  
...  

Recently, two air quality campaigns were conducted in the southwestern United States to study the impact of transported ozone, stratospheric intrusions, and fire emissions on ground-level ozone concentrations. The California Baseline Ozone Transport Study (CABOTS) took place in May – August 2016 covering the central California coast and San Joaquin Valley, and the Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS) was conducted in the greater Las Vegas, Nevada area in May – June 2017. During these studies, nearly 1000 hours of ozone and aerosol profile data were collected with the NOAA TOPAZ lidar. A Doppler wind lidar and a radar wind profiler provided continuous observations of atmospheric turbulence, horizontal winds, and mixed layer height. These measurements allowed us to directly observe the degree to which ozone transport layers aloft were entrained into the boundary layer and to quantify the resulting impact on surface ozone levels. Mixed layer heights in the San Joaquin Valley during CABOTS were generally below 1 km above ground level (AGL), while boundary layer heights in Las Vegas during FAST-LVOS routinely exceeded 3 km AGL and occasionally reached up to 4.5 km AGL. Consequently, boundary layer entrainment was more often observed during FAST-LVOS, while most elevated ozone layers passed untapped over the San Joaquin Valley during CABOTS.


2021 ◽  
Vol 2 (6) ◽  
pp. 1-4
Author(s):  
Ponyaev L

The new shortly and low cost Regular Airlines Cargo & PAX directions via Arctic Cross Polar Air Transportation Routes of the future High Ecology Efficiency and Safety ICAO Strategy will be base on the more perspective for Trans Continental Airlines Operations by IATA International Law Regulations and World Climate Protect Law. Using the more shortly directions of Trans Polar Flight for Long-Haul Aircrafts (LHA) Routes by leader Airlines Sky Teams with Aeroflot are request to find new Geometrical Layout of Aircraft Design Industrial Projections & Products Lines. The increase in the dimension of LHA came into conflict with modern Airport Infrastructure and led to the search for alternative Arctic Planes & Dirigibles Options for constructively layout circuit solutions with protection of minimum weight and drag issues in order to deal with this contradiction. Computer Digital Aircraft Structural-Parametric Analysis of the influence of Aviation Infrastructure Constraints in the basing of LHA on the choice of alternative Design Options for Lift Fuselage Body or Flying-V layout was carried out.


2020 ◽  
Vol 13 (6) ◽  
pp. 3221-3233 ◽  
Author(s):  
Andreas Behrendt ◽  
Volker Wulfmeyer ◽  
Christoph Senff ◽  
Shravan Kumar Muppa ◽  
Florian Späth ◽  
...  

Abstract. We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2 Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m−2, with the second number for the noise uncertainty, is found at 0.5 zi. At about 0.7 zi, H changes sign to negative values above. The entrainment flux was (-62±27) W m−2. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi was −0.28 W m−3, which corresponds to a warming of 0.83 K h−1. The L profile shows a slight positive mean flux divergence of 0.12 W m−3 and an entrainment flux of (214±36) W m−2. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.


2016 ◽  
Vol 16 (16) ◽  
pp. 10559-10572 ◽  
Author(s):  
Narendra Singh ◽  
Raman Solanki ◽  
Narendra Ojha ◽  
Ruud H. H. Janssen ◽  
Andrea Pozzer ◽  
...  

Abstract. We investigate the time evolution of the Local Boundary Layer (LBL) for the first time over a mountain ridge at Nainital (79.5° E, 29.4° N, 1958 m a.m.s.l.) in the central Himalayan region, using a radar wind profiler (RWP) during November 2011 to March 2012, as a part of the Ganges Valley Aerosol Experiment (GVAX). We restrict our analysis to clear–sunny days, resulting in a total of 78 days of observations. The standard criterion of the peak in the signal-to-noise ratio (S ∕ N) profile was found to be inadequate in the characterization of mixed layer (ML) top at this site. Therefore, we implemented a criterion of S ∕ N > 6 dB for the characterization of the ML and the resulting estimations are shown to be in agreement with radiosonde measurements over this site. The daytime average (05:00–10:00 UTC) observed boundary layer height ranges from 440 ± 197 m in November (late autumn) to 766 ± 317 m above ground level (a.g.l.) in March (early spring). The observations revealed a pronounced impact of mountain topography on the LBL dynamics during March, when strong winds (> 5.6 m s−1) lead to LBL heights of 650 m during nighttime. The measurements are further utilized to evaluate simulations from the Weather Research and Forecasting (WRF) model. WRF simulations captured the day-to-day variations up to an extent (r2 = 0.5), as well as the mean diurnal variations (within 1σ variability). The mean biases in the daytime average LBL height vary from −7 % (January) to +30 % (February) between model and observations, except during March (+76 %). Sensitivity simulations using a mixed layer model (MXL/MESSy) indicated that the springtime overestimation of LBL would lead to a minor uncertainty in simulated surface ozone concentrations. However, it would lead to a significant overestimation of the dilution of black carbon aerosols at this site. Our work fills a gap in observations of local boundary layer over this complex terrain in the Himalayas, and highlights the need for year-long simultaneous measurements of boundary layer dynamics and air quality to better understand the role of lower tropospheric dynamics in pollution transport.


2016 ◽  
Vol 16 (21) ◽  
pp. 13837-13851 ◽  
Author(s):  
Maria Zatko ◽  
Joseph Erbland ◽  
Joel Savarino ◽  
Lei Geng ◽  
Lauren Easley ◽  
...  

Abstract. Reactive nitrogen (Nr  =  NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3−) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3−) measurements range from −5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71  ×  107 molec cm−2 s−1 over the course of the field campaign, with a maximum noontime value of 3.1  ×  109 molec cm−2 s−1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly polluted Uintah Basin boundary layer during winter 2014.


Sign in / Sign up

Export Citation Format

Share Document