scholarly journals Polyphasic Characterization of Microbiota of “Mastredda”, a Traditional Wooden Tool Used during the Production of PDO Provola dei Nebrodi Cheese

2021 ◽  
Vol 11 (18) ◽  
pp. 8647
Author(s):  
Gabriele Busetta ◽  
Giuliana Garofalo ◽  
Guido Mangione ◽  
Luigi Botta ◽  
Elena Franciosi ◽  
...  

The biofilms of the wooden tables used for the acidification of the curd were investigated for PDO Provola dei Nebrodi cheese, a traditional stretched cheese made in eastern Sicily (southern Italy) from raw cows’ milk. To this purpose the wooden tables of four dairy facilities were analysed for their microbiota by scanning electron microscopy (SEM) analysis and a combined culture-independent and -dependent microbiological approach. SEM inspection showed an almost continuous biofilm formation. MiSeq Illumina analysis identified 8 phyla, 16 classes, 25 orders, 47 families and 50 genera. Corynebacterium, Bifidobacterium and lactic acid bacteria (LAB) were detected in all samples. In particular, the LAB genera detected on all wooden tables were Lactobacillus, Streptococcus and Lactococcus. LAB dominated the surfaces of all wooden tables with levels higher than 7.0 Log CFU/cm2. In particular, the LAB found at the highest levels were mesophilic cocci. Coagulase positive staphylococci, Salmonella spp., Listeria monocytogenes and Shiga-toxigenic Escherichia coli were never detected. Twenty-seven dominating LAB strains were identified within the genera Enterococcus, Lactobacillus, Lacticaseibacillus, Lactiplantibacillus, Levilactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus. This work showed that the wooden table used during the production of PDO Provola dei Nebrodi cheese is a safe system and a microbiologically active tool.

2020 ◽  
Vol 26 (24) ◽  
pp. 2807-2816 ◽  
Author(s):  
Yun Su Jang ◽  
Tímea Mosolygó

: Bacteria within biofilms are more resistant to antibiotics and chemical agents than planktonic bacteria in suspension. Treatment of biofilm-associated infections inevitably involves high dosages and prolonged courses of antimicrobial agents; therefore, there is a potential risk of the development of antimicrobial resistance (AMR). Due to the high prevalence of AMR and its association with biofilm formation, investigation of more effective anti-biofilm agents is required. : From ancient times, herbs and spices have been used to preserve foods, and their antimicrobial, anti-biofilm and anti-quorum sensing properties are well known. Moreover, phytochemicals exert their anti-biofilm properties at sub-inhibitory concentrations without providing the opportunity for the emergence of resistant bacteria or harming the host microbiota. : With increasing scientific attention to natural phytotherapeutic agents, numerous experimental investigations have been conducted in recent years. The present paper aims to review the articles published in the last decade in order to summarize a) our current understanding of AMR in correlation with biofilm formation and b) the evidence of phytotherapeutic agents against bacterial biofilms and their mechanisms of action. The main focus has been put on herbal anti-biofilm compounds tested to date in association with Staphylococcus aureus, Pseudomonas aeruginosa and food-borne pathogens (Salmonella spp., Campylobacter spp., Listeria monocytogenes and Escherichia coli).


2020 ◽  
Vol 17 ◽  
Author(s):  
Biswajit Panda ◽  
Amal Kumar Gooyee

: Oceans can play a major role in supplying life-saving medicines in the world in future. Although considerable progress has been made in finding new medicines from marine sources, large efforts are still necessary to examine such molecules for clinical applications. Xyloketals are an important group of natural products with various powerful and prominent bioactivities such as inhibition of acetylcholine esterase, antioxidant activity, inhibition of L-calcium channels, radicalscavenging behavior, suppression of cell proliferation, reduction of neonatal hypoxic-ischemic brain injury, etc. This review describes the isolation and structural characterization of all xyloketal natural products giving major emphasis on their bioactivity.


Author(s):  
Bibian Bibeca Bumbila García ◽  
Hernán Andrés Cedeño Cedeño ◽  
Tatiana Moreira Chica ◽  
Yaritza Rossana Parrales Ríos

The objective of the work is to establish the characterization of the auditory disability and its relationship with resilience at the Technical University of Manabí. The article shows a conceptual analysis related to the inclusion and social integration of disabled students. Based on the fact that the person with disabilities grows and develops in the same way as that of people without disabilities and what usually happens is that disabled people are rejected and discriminated against based on a prefabricated and erroneous conceptualization of these people. The results associated with the application of the SV-RES test prepared by the researchers are shown (Saavedra & Villalta, 2008b). Characterization of the auditory deficit is made in the students, and the limitations that derive from it are pointed out. We analyze the particularities related to communication with students who have a hearing disability and resilience in this type of student, where some personal highlights that in this sense constitute an example of resilience. Finally, the results related to the study of the relationship between students' hearing disability and the level of resilience dimensions are shown.


2013 ◽  
Vol 90 (3) ◽  
pp. 214-219 ◽  
Author(s):  
Giuseppina Lacerra ◽  
Romeo Prezioso ◽  
Gennaro Musollino ◽  
Giulio Piluso ◽  
Lucia Mastrullo ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 785
Author(s):  
Abubakar Siddique ◽  
Sara Azim ◽  
Amjad Ali ◽  
Saadia Andleeb ◽  
Aitezaz Ahsan ◽  
...  

Salmonellosis caused by non-typhoidal Salmonellaenterica from poultry products is a major public health concern worldwide. This study aimed at estimating the pathogenicity and antimicrobial resistance in S. enterica isolates obtained from poultry birds and their food products from different areas of Pakistan. In total, 95/370 (25.67%) samples from poultry droppings, organs, eggs, and meat were positive for Salmonella. The isolates were further identified through multiplex PCR (mPCR) as Salmonella Typhimurium 14 (14.7%), Salmonella Enteritidis 12 (12.6%), and other Salmonella spp. 69 (72.6%). The phenotypic virulence properties of 95 Salmonella isolates exhibited swimming and/or swarming motility 95 (100%), DNA degrading activity 93 (97.8%), hemolytic activity 92 (96.8%), lipase activity 87 (91.6%), and protease activity 86 (90.5%). The sopE virulence gene known for conferring zoonotic potential was detected in S. Typhimurium (92.8%), S. Enteritidis (100%), and other Salmonella spp. (69.5%). The isolates were further tested against 23 antibiotics (from 10 different antimicrobial groups) and were found resistant against fifteen to twenty-one antibiotics. All isolates showed multiple drug resistance and were found to exhibit a high multiple antibiotic-resistant (MAR) index of 0.62 to 0.91. The strong biofilm formation at 37 °C reflected their potential adherence to intestinal surfaces. There was a significant correlation between antimicrobial resistance and the biofilm formation potential of isolates. The resistance determinant genes found among the isolated strains were blaTEM-1 (59.3%), blaOxA-1 (18%), blaPSE-1 (9.5%), blaCMY-2 (43%), and ampC (8.3%). The detection of zoonotic potential MDR Salmonella in poultry and its associated food products carrying cephalosporin and quinolone resistance genes presents a major threat to the poultry industry and public health.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 491
Author(s):  
Alejandra Ramirez-Hernandez ◽  
Ana K. Carrascal-Camacho ◽  
Andrea Varón-García ◽  
Mindy M. Brashears ◽  
Marcos X. Sanchez-Plata

The poultry industry in Colombia has implemented several changes and measures in chicken processing to improve sanitary operations and control pathogens’ prevalence. However, there is no official in-plant microbial profile reference data currently available throughout the processing value chains. Hence, this research aimed to study the microbial profiles and the antimicrobial resistance of Salmonella isolates in three plants. In total, 300 samples were collected in seven processing sites. Prevalence of Salmonella spp. and levels of Enterobacteriaceae were assessed. Additionally, whole-genome sequencing was conducted to characterize the isolated strains genotypically. Overall, the prevalence of Salmonella spp. in each establishment was 77%, 58% and 80% for plant A, B, and C. The mean levels of Enterobacteriaceae in the chicken rinsates were 5.03, 5.74, and 6.41 log CFU/mL for plant A, B, and C. Significant reductions were identified in the counts of post-chilling rinsate samples; however, increased levels were found in chicken parts. There were six distinct Salmonella spp. clusters with the predominant sequence types ST32 and ST28. The serotypes Infantis (54%) and Paratyphi B (25%) were the most commonly identified within the processing plants with a high abundance of antimicrobial resistance genes.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 546
Author(s):  
Pilar Sabuquillo ◽  
Jaime Cubero

Xanthomonasarboricola pv. pruni (Xap) causes bacterial spot of stone fruit and almond, an important plant disease with a high economic impact. Biofilm formation is one of the mechanisms that microbial communities use to adapt to environmental changes and to survive and colonize plants. Herein, biofilm formation by Xap was analyzed on abiotic and biotic surfaces using different microscopy techniques which allowed characterization of the different biofilm stages compared to the planktonic condition. All Xap strains assayed were able to form real biofilms creating organized structures comprised by viable cells. Xap in biofilms differentiated from free-living bacteria forming complex matrix-encased multicellular structures which become surrounded by a network of extracellular polymeric substances (EPS). Moreover, nutrient content of the environment and bacterial growth have been shown as key factors for biofilm formation and its development. Besides, this is the first work where different cell structures involved in bacterial attachment and aggregation have been identified during Xap biofilm progression. Our findings provide insights regarding different aspects of the biofilm formation of Xap which improve our understanding of the bacterial infection process occurred in Prunus spp and that may help in future disease control approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diogo Martins ◽  
Michael A. DiCandia ◽  
Aristides L. Mendes ◽  
Daniela Wetzel ◽  
Shonna M. McBride ◽  
...  

AbstractBacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50–60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A genomic signature for sporulation in the human intestine was recently described, which spans both commensals and pathogens such as Clostridioides difficile and contains several genes of unknown function. We report on the characterization of a signature gene, CD25890, which, as we show is involved in the control of sporulation initiation in C. difficile under certain nutritional conditions. Spo0A is the main regulatory protein controlling entry into sporulation and we show that an in-frame deletion of CD25890 results in increased expression of spo0A per cell and increased sporulation. The effect of CD25890 on spo0A is likely indirect and mediated through repression of the sinRR´ operon. Deletion of the CD25890 gene, however, does not alter the expression of the genes coding for the cytotoxins or the genes involved in biofilm formation. Our results suggest that CD25890 acts to modulate sporulation in response to the nutrients present in the environment.


Sign in / Sign up

Export Citation Format

Share Document