scholarly journals GNSS-Free Outdoor Localization Techniques for Resource-Constrained IoT Architectures: A Literature Review

2021 ◽  
Vol 11 (22) ◽  
pp. 10793
Author(s):  
Azin Moradbeikie ◽  
Ahmad Keshavarz ◽  
Habib Rostami ◽  
Sara Paiva ◽  
Sérgio Ivan Lopes

Large-scale deployments of the Internet of Things (IoT) are adopted for performance improvement and cost reduction in several application domains. The four main IoT application domains covered throughout this article are smart cities, smart transportation, smart healthcare, and smart manufacturing. To increase IoT applicability, data generated by the IoT devices need to be time-stamped and spatially contextualized. LPWANs have become an attractive solution for outdoor localization and received significant attention from the research community due to low-power, low-cost, and long-range communication. In addition, its signals can be used for communication and localization simultaneously. There are different proposed localization methods to obtain the IoT relative location. Each category of these proposed methods has pros and cons that make them useful for specific IoT systems. Nevertheless, there are some limitations in proposed localization methods that need to be eliminated to meet the IoT ecosystem needs completely. This has motivated this work and provided the following contributions: (1) definition of the main requirements and limitations of outdoor localization techniques for the IoT ecosystem, (2) description of the most relevant GNSS-free outdoor localization methods with a focus on LPWAN technologies, (3) survey the most relevant methods used within the IoT ecosystem for improving GNSS-free localization accuracy, and (4) discussion covering the open challenges and future directions within the field. Some of the important open issues that have different requirements in different IoT systems include energy consumption, security and privacy, accuracy, and scalability. This paper provides an overview of research works that have been published between 2018 to July 2021 and made available through the Google Scholar database.

2020 ◽  
Vol 10 (21) ◽  
pp. 7699
Author(s):  
Shin-Hung Pan ◽  
Shu-Ching Wang

Because the Internet of Things (IoT) can provide a global service network through various smart devices, the IoT has been widely used in smart transportation, smart cities, smart healthcare, and factory automation through the Internet connection. With the large-scale establishment and 5G (fifth generation) wireless networks, the cellular Internet of Things (CIoT) will continue to be developed and applied to a wide range of applications. In order to provide a reliable application of CIoT, a safe and reliable network topology MECIoT is proposed in this study. To improve the reliability and fault-tolerant capability of the network proposed, the problem of reaching agreement should be revisited. Therefore, the applications in the system can still be performed correctly even if some processing units (PUs) in the system have failed. In this study, a new protocol is proposed to allow all normal PUs in MECIoT to reach an agreement with the minimum amount of data exchanges required and the maximum number of failed PUs allowed in MECIoT. In the end, the optimality of the protocol has been proven by mathematical method.


Author(s):  
Amtul Waheed ◽  
Jana Shafi

Smart cities are established on some smart components such as smart governances, smart economy, science and technology, smart politics, smart transportation, and smart life. Each and every smart object is interconnected through the internet, challenging the security and privacy of citizen's sensitive information. A secure framework for smart cities is the only solution for better and smart living. This can be achieved through IoT infrastructure and cloud computing. The combination of IoT and Cloud also increases the storage capacity and computational power and make services pervasive, cost-effective, and accessed from anywhere and any device. This chapter will discuss security issues and challenges of smart city along with cyber security framework and architecture of smart cities for smart infrastructures and smart applications. It also presents a general study about security mechanism for smart city applications and security protection methodology using IOT service to stand against cyber-attacks.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4273
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

The growth of the Internet of Things (IoT) led to the deployment of many applications that use wireless networks, like smart cities and smart agriculture. Low Power Wide Area Networks (LPWANs) meet many requirements of IoT, such as energy efficiency, low cost, large coverage area, and large-scale deployment. Long Range Wide Area Network (LoRaWAN) networks are one of the most studied and implemented LPWAN technologies, due to the facility to build private networks with an open standard. Typical LoRaWAN networks are single-hop in a star topology, composed of end-devices that transmit data directly to gateways. Recently, several studies proposed multihop LoRaWAN networks, thus forming wireless mesh networks. This article provides a review of the state-of-the-art multihop proposals for LoRaWAN. In addition, we carried out a comparative analysis and classification, considering technical characteristics, intermediate devices function, and network topologies. This paper also discusses open issues and future directions to realize the full potential of multihop networking. We hope to encourage other researchers to work on improving the performance of LoRaWAN mesh networks, with more theoretical and simulation analysis, as well as practical deployments.


2020 ◽  
Vol 12 (10) ◽  
pp. 4105
Author(s):  
Alaa Omran Almagrabi ◽  
Yasser D. Al-Otaibi

Nowadays, communication engineering technology is merging with the Internet of Things (IoT), which consists of numerous connected devices (referred to as things) around the world. Many researchers have shown significant growth of sensor deployments for multiple smart engineering technologies, such as smart-healthcare, smart-industries, smart-cities, and smart-transportation, etc. In such intelligent engineering technologies, sensors continuously generate a bunch of messages in the network. To enhance the value of the data in the messages, we must know the actuality of the data embedded inside the messages. For this purpose, the contextual information of the data creates a vital challenge. Recently, context-aware computing has emerged to be fruitful in dealing with sensor information. In the ubiquitous computing domain, location is commonly considered one of the most essential sources of context. However, whenever users or applications are concerned with objects, and their site or spatial relationships, location models or spatial models are necessary to form a model of the environment. This paper investigates the area of context-aware messaging and addressing services in diverse IoT applications. The paper examines the notion of context and the use of context within the data exchanged by the sensors in an IoT application for messaging and addressing purposes. Based on the importance and need for context of the information, we identify three critical categories of new IoT applications for context-aware messaging and addressing services: emergency applications, applications for guiding and reminding, and social networking applications. For this purpose, a representative range of systems is reviewed according to the application type, the technology being used, their architecture, the context information, and the services they provide. This survey assists the work of defining an approach for context-aware messaging services domain by discovering the area of context-aware messaging.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 195
Author(s):  
Davide Andrea Guastella ◽  
Guilhem Marcillaud ◽  
Cesare Valenti

Smart cities leverage large amounts of data acquired in the urban environment in the context of decision support tools. These tools enable monitoring the environment to improve the quality of services offered to citizens. The increasing diffusion of personal Internet of things devices capable of sensing the physical environment allows for low-cost solutions to acquire a large amount of information within the urban environment. On the one hand, the use of mobile and intermittent sensors implies new scenarios of large-scale data analysis; on the other hand, it involves different challenges such as intermittent sensors and integrity of acquired data. To this effect, edge computing emerges as a methodology to distribute computation among different IoT devices to analyze data locally. We present here a new methodology for imputing environmental information during the acquisition step, due to missing or otherwise out of order sensors, by distributing the computation among a variety of fixed and mobile devices. Numerous experiments have been carried out on real data to confirm the validity of the proposed method.


Informatics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 8 ◽  
Author(s):  
Christopher McDermott ◽  
John Isaacs ◽  
Andrei Petrovski

The growth of the Internet of Things (IoT), and demand for low-cost, easy-to-deploy devices, has led to the production of swathes of insecure Internet-connected devices. Many can be exploited and leveraged to perform large-scale attacks on the Internet, such as those seen by the Mirai botnet. This paper presents a cross-sectional study of how users value and perceive security and privacy in smart devices found within the IoT. It analyzes user requirements from IoT devices, and the importance placed upon security and privacy. An experimental setup was used to assess user ability to detect threats, in the context of technical knowledge and experience. It clearly demonstrated that without any clear signs when an IoT device was infected, it was very difficult for consumers to detect and be situationally aware of threats exploiting home networks. It also demonstrated that without adequate presentation of data to users, there is no clear correlation between level of technical knowledge and ability to detect infected devices.


Author(s):  
Aldina Avdić ◽  
Ejub Kajan ◽  
Dragan Janković ◽  
Dženan Avdić

This paper deals with the context-aware smart healthcare platform, based on IoT and citizen sensing. The proposed platform provides support to smart cities' citizens in the form of air quality visualization in their surroundings and by appropriate notifications in case of dangerous pollutants level is sensed. It also provides medical assistance based on “help needed” function, and where available, on the medical record of a patient that uses the platform services. The platform is interactive, so the information sent by the users and the requests for help will be processed. Platform development is based on a special kind of social machine that is capable to capture the city’s sensors data, analyze these data and to interact with appropriate business processes. On return, that interaction results with several goals achieved with the project. Presented dashboard visualization allows decision makers, e.g. medical staff, to take proper actions on time and on-the-fly. On the other side, citizens that suffer from a variety of disease problems are able to report an air pollution incident, and ask for help, if they felt worse. The platform itself has a wider usability value and may be deployed to other smart services in a city, e.g. waste management, smart transportation, energy savings, etc. It is also scalable and open for a variety of sensor devices ranges from smartphones, wearables, and other IoT that resides in a smart city, and for different forms of crowdsensing methods. Finally, concluding remarks emphasize the future research directions.


2021 ◽  
Author(s):  
Jingjing Zhang ◽  
Weihua Zeng ◽  
Shengli Hou ◽  
Yuqi Chen ◽  
Linyan Guo ◽  
...  

Abstract Street lighting, as the most essential and universal component of the urban lighting system, accounts for a large portion of public electricity usage. Therefore, improving street lamps working efficiency is vital for energy savings. This paper demonstrates the design of a smart street lighting system supported by the combination of NB-IoT and LoRa communication technology. By adopting an optimized street lamp control algorithm, the system can realize the automatic control of street lights according to the real-time traffic flow information. This system has been installed on Luyang Avenue, Lucheng City, Shanxi Province, China in May 2019. It managed to reduce the electricity consumption in this region significantly in June 2019, which was 18% lower than that in April 2019 and 19.7% lower than that in June 2018. By illustrating the unique advantages of this system in energy savings and cost reduction, this paper displays its potential for further application in the construction of smart cities on a large scale.


2021 ◽  
Vol 29 (6) ◽  
pp. 1-18
Author(s):  
Bingqian Zhang ◽  
Guochao Peng ◽  
Fei Xing ◽  
Si Chen

Aligned with the global trend of smartness, China has invested heavily in over 700 smart city projects across over 500 cities. Hundreds of smart city apps, initiated by local authorities, have so emerged in the daily lives of Chinese citizens, but anecdotal evidence showed that these official apps have many problems and deficiencies. This study captures a snapshot of current development and problems of official smart city apps in China. A total of 333 such apps, together with 15754 comments, were collected, reviewed and analyzed. The results showed that China’s smart city apps fall into three application areas, i.e. smart transportation, smart healthcare, and smart livelihood, of which each provides some promising features and services. However, a range of functional, interface, design, usage and service-related problems were found in these apps. This paper concluded that further to the very efforts on infrastructure and hardware, local authorities in China and worldwide need to pay more attention to smart apps, in order to maximize potential return of their smart city investments.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4665 ◽  
Author(s):  
Zhaoyang Wang ◽  
Xuebo Jin ◽  
Xiaoyi Wang ◽  
Jiping Xu ◽  
Yuting Bai

Reliable and accurate localization of objects is essential for many applications in wireless networks. Especially for large-scale wireless sensor networks (WSNs), both low cost and high accuracy are targets of the localization technology. However, some range-free methods cannot be combined with a cooperative method, because these range-free methods are characterized by low accuracy of distance estimation. To solve this problem, we propose a hard decision-based cooperative localization method. For distance estimation, an exponential distance calibration formula is derived to estimate distance. In the cooperative phase, the cooperative method is optimized by outlier constraints from neighboring anchors. Simulations are conducted to verify the effectiveness of the proposed method. The results show that localization accuracy is improved in different scenarios, while high node density or anchor density contributes to the localization. For large-scale WSNs, the hard decision-based cooperative localization is proved to be effective.


Sign in / Sign up

Export Citation Format

Share Document