scholarly journals Reducing the Heart Failure Burden in Romania by Predicting Congestive Heart Failure Using Artificial Intelligence: Proof of Concept

2021 ◽  
Vol 11 (24) ◽  
pp. 11728
Author(s):  
Maria-Alexandra Pană ◽  
Ștefan-Sebastian Busnatu ◽  
Liviu-Ionut Serbanoiu ◽  
Electra Vasilescu ◽  
Nirvana Popescu ◽  
...  

Due to population aging, we are currently confronted with an increased number of chronic heart failure patients. The primary purpose of this study was to implement a noncontact system that can predict heart failure exacerbation through vocal analysis. We designed the system to evaluate the voice characteristics of every patient, and we used the identified variations as an input for a machine-learning-based approach. We collected data from a total of 16 patients, 9 men and 7 women, aged 65–91 years old, who agreed to take part in the study, with a detailed signed informed consent. We included hospitalized patients admitted with cardiogenic acute pulmonary edema in the study, regardless of the precipitation cause or other known cardiovascular comorbidities. There were no specific exclusion criteria, except age (which had to be over 18 years old) and patients with speech inabilities. We then recorded each patient’s voice twice a day, using the same smartphone, Lenovo P780, from day one of hospitalization—when their general status was critical—until the day of discharge, when they were clinically stable. We used the New York Heart Association Functional Classification (NYHA) classification system for heart failure to include the patients in stages based on their clinical evolution. Each voice recording has been accordingly equated and subsequently introduced into the machine-learning algorithm. We used multiple machine-learning techniques for classification in order to detect which one turns out to be more appropriate for the given dataset and the one that can be the starting point for future developments. We used algorithms such as Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). After integrating the information from 15 patients, the algorithm correctly classified the 16th patient into the third NYHA stage at hospitalization and second NYHA stage at discharge, based only on his voice recording. The KNN algorithm proved to have the best classification accuracy, with a value of 0.945. Voice is a cheap and easy way to monitor a patient’s health status. The algorithm we have used for analyzing the voice provides highly accurate preliminary results. We aim to obtain larger datasets and compute more complex voice analyzer algorithms to certify the outcomes presented.

2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
T Uejima ◽  
J Cho ◽  
H Hayama ◽  
L Takahashi ◽  
J Yajima ◽  
...  

Abstract Background The assessment of diastolic function is still challenging in the setting of heart failure (HF). We tested the hypothesis that applying a machine learning algorithm would detect heterogeneity in diastolic function and improve risk stratification in HF population. Methods This study included consecutive 279 patients with clinically stable HF referred for echocardiographic assessment, for whom diastolic function variables were measured according to the current guidelines. Cluster analysis, an unsupervised machine learning algorithm, was undertaken on these variables to form homogeneous groups of patients with similar profiles of the variables. Sequential Cox models paralleling the clinical sequence of HF assessment were used to elucidate the benefit of cluster-based classification over guidelines-based classification. The primary endpoint was a hospitalization for worsening HF. Results Cluster analysis identified 3 clusters with distinct properties of diastolic function that shared similarities with guidelines-based classification. The clusters were associated with brain natriuretic peptide level (p < 0.001, figure A). During follow-up period of 2.6 ± 2.0 years, 62 patients (22%) experienced the primary endpoint. Cluster-based classification exhibited a significant prognostic value (c2 = 20.3, p < 0.001, figure B), independent from and incremental to an established clinical risk score for HF (MAGGIC score) and left ventricular end-diastolic volume (hazard ratio = 1.677, p = 0.017, model c2: from 47.5 to 54.1, p = 0.015, figure D). Although guideline-based classification showed a significant prognostic value (c2 = 13.1, p = 0.001, figure C), it did not significantly improve overall prognostication from the baseline (model c2: from 47.5 to 49.9, p = 0.199, figure D). Conclusion Machine learning techniques help grading diastolic function and stratifying the risk for decompensation in HF. Abstract 153 Figure.


Author(s):  
Achyuth Kothuru ◽  
Sai Prasad Nooka ◽  
Patricia Iglesias Victoria ◽  
Rui Liu

The machining process monitoring, especially the tool wear monitoring, is very critical in modern automated gear machining environment which needs instant detection of cutting tool state and/or process conditions, quick final diagnosis and appropriate actions. It has been realized that the non-uniform hardness of the workpiece material due to the improper heat treatment can cause expedited tool wear and unexpected tool breakage, which greatly increases difficulties and complexities in monitoring the tool conditions in gear cutting. This paper provides a solution to detect the wear conditions of the gear milling cutter in the cutting of workpiece materials with hardness variations using the audible sound signals. In this study, cutting tools and workpieces are prepared to have different flank wear classes and hardness variations respectively. A series of gear milling experiments are operated with a broad range of cutting conditions to collect sound signals. A machine learning algorithm that incorporates support vector machine (SVM) approach coupled with the application of time and frequency domain analysis is developed to correlate observed sound signals’ signatures to specified tool wear classes and workpiece hardness levels. The performance evaluation results of the proposed monitoring system have shown accurate predictions in detecting tool wear conditions and workpiece hardness variations from the sound signals in gear milling.


2021 ◽  
Vol 11 (5) ◽  
pp. 343
Author(s):  
Fabiana Tezza ◽  
Giulia Lorenzoni ◽  
Danila Azzolina ◽  
Sofia Barbar ◽  
Lucia Anna Carmela Leone ◽  
...  

The present work aims to identify the predictors of COVID-19 in-hospital mortality testing a set of Machine Learning Techniques (MLTs), comparing their ability to predict the outcome of interest. The model with the best performance will be used to identify in-hospital mortality predictors and to build an in-hospital mortality prediction tool. The study involved patients with COVID-19, proved by PCR test, admitted to the “Ospedali Riuniti Padova Sud” COVID-19 referral center in the Veneto region, Italy. The algorithms considered were the Recursive Partition Tree (RPART), the Support Vector Machine (SVM), the Gradient Boosting Machine (GBM), and Random Forest. The resampled performances were reported for each MLT, considering the sensitivity, specificity, and the Receiving Operative Characteristic (ROC) curve measures. The study enrolled 341 patients. The median age was 74 years, and the male gender was the most prevalent. The Random Forest algorithm outperformed the other MLTs in predicting in-hospital mortality, with a ROC of 0.84 (95% C.I. 0.78–0.9). Age, together with vital signs (oxygen saturation and the quick SOFA) and lab parameters (creatinine, AST, lymphocytes, platelets, and hemoglobin), were found to be the strongest predictors of in-hospital mortality. The present work provides insights for the prediction of in-hospital mortality of COVID-19 patients using a machine-learning algorithm.


2021 ◽  
Vol 22 (2) ◽  
pp. 939
Author(s):  
Jiazhi Song ◽  
Guixia Liu ◽  
Jingqing Jiang ◽  
Ping Zhang ◽  
Yanchun Liang

Accurately identifying protein–ATP binding residues is important for protein function annotation and drug design. Previous studies have used classic machine-learning algorithms like support vector machine (SVM) and random forest to predict protein–ATP binding residues; however, as new machine-learning techniques are being developed, the prediction performance could be further improved. In this paper, an ensemble predictor that combines deep convolutional neural network and LightGBM with ensemble learning algorithm is proposed. Three subclassifiers have been developed, including a multi-incepResNet-based predictor, a multi-Xception-based predictor, and a LightGBM predictor. The final prediction result is the combination of outputs from three subclassifiers with optimized weight distribution. We examined the performance of our proposed predictor using two datasets: a classic ATP-binding benchmark dataset and a newly proposed ATP-binding dataset. Our predictor achieved area under the curve (AUC) values of 0.925 and 0.902 and Matthews Correlation Coefficient (MCC) values of 0.639 and 0.642, respectively, which are both better than other state-of-art prediction methods.


Author(s):  
Mayuri Wankhade ◽  
U. W. Hore

Banana is one of the most consumed fruits globally. It contributes about 16% of the world’s fruit production according to FAO. Maturity stage of fresh banana fruit is a principal factor that affects the fruit quality during ripening and marketability after ripening. The machine learning techniques with adequate concepts of image processing have a great scope to provide intelligence for designing an automation system to differentiate the fruits according to its type, variety, matureness and intactness. Application of image processing has helped agriculture to improve yield estimation, disease detection, fruit sorting, irrigation and maturity grading. In this paper, an automatic system is implemented to identify the ripening stages of banana from images. The feature extraction is performed using pre-trained deep convolution neural network i.e. Inception V3 to get the low to high level features automatically and later classification is carried out using various support vector machine learning algorithm to get ripening stages of fruit as predicted output.


2021 ◽  
Author(s):  
Simarjeet Kaur ◽  
Meenakshi Bansal ◽  
Ashok Kumar Bathla

Due to the rise in the use of messaging and mailing services, spam detection tasks are of much greater importance than before. In such a set of communications, efficient classification is a comparatively onerous job. For an addressee or any email that the user does not want to have in his inbox, spam can be defined as redundant or trash email. After pre-processing and feature extraction, various machine learning algorithms were applied to a Spam base dataset from the UCI Machine Learning repository in order to classify incoming emails into two categories: spam and non-spam. The outcomes of various algorithms have been compared. This paper used random forest, naive bayes, support vector machine (SVM), logistic regression, and the k nearest (KNN) machine learning algorithm to successfully classify email spam messages. The main goal of this study is to improve the prediction accuracy of spam email filters.


Sign in / Sign up

Export Citation Format

Share Document