scholarly journals Experimental Study on Axial Compression Behavior and Bearing Capacity Analysis of High Titanium Slag CFST Columns

2019 ◽  
Vol 9 (10) ◽  
pp. 2021 ◽  
Author(s):  
Chunli Zhou ◽  
Wei Chen ◽  
Xiaolong Ruan ◽  
Xueying Tang

In order to study the axial compression behavior of concrete-filled steel tubular (CFST) columns filled with high titanium slag, a total of 32 specimens, including normal CFST columns, half-high titanium slag CFST columns, and full-high titanium slag CFST columns, were used as experimental samples in this study. The axial compression behaviors of high titanium slag CFST columns and normal CFST columns with various parameters such as length–diameter ratio, strength grade of concrete, strength grade of steel tube, steel content ratio, etc., were evaluated and compared through axial compression testing under monotonic static loading. The results showed that the axial compressive behaviors of high titanium slag CFST columns with various length–diameter ratios were not significantly different from those of normal CFST columns, both of which showed good axial compression performance. In addition, the length–diameter ratio limit between short and medium long column was from 3.5 to 4.4. The length–diameter ratio was the main factor influencing the shape of load–deformation curve of CFST columns. The casing hoop coefficient also had a great influence on the bearing capacity of short columns, while the influence on that of middle and long columns was not obvious. In the end, the bearing capacities of all specimens were calculated by bearing capacity formulas in European EC4, American AISC360-10, and Chinese GB50936-2014 standards. The calculated values were in good agreement with the test results.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Feng Yu ◽  
Pengcheng Xu ◽  
Yuan Fang ◽  
Yang Zhang ◽  
Junjie Jiang

In this study, twenty-one recycled self-compacting concrete-filled circular steel tubular (RSCFCST) columns are designed and tested under eccentric compression. The studied parameters including the replacement ratio of the recycled coarse aggregate (RCA), strength grade of concrete, eccentricity, and length-diameter ratio L/D of specimens are considered. The load-stiffness curves of the specimens are obtained by observing the whole process of loading, and the effects of various parameters on the stiffness of the specimens are analyzed. Test results demonstrate that the RSCFCST short columns L/D≤4 under eccentric compression exhibit drum-like bending failures, while the RSCFCST long columns L/D>4 under eccentric compression experience the global flexural buckling failure modes. With the replacement ratio of RCA, the length-diameter ratio or eccentricity increases, and the bearing capacity of specimens under eccentric compression decreases. However, the increase in the strength grade of concrete increases the bearing capacity. The stiffness of the RSCFCST columns under eccentric compression gradually increases as the strength grade of concrete increases, while the eccentricity had an adverse effect on stiffness of specimen. With the increase of load, the increase of the length-diameter ratio would accelerate the stiffness degradation of specimen. The effect of the replacement ratio of RCA on stiffness of specimen in the elastic stage is not obvious. A validated FE model is employed to conduct parametric studies to widen the available test results. Additionally, an analytical model for predicting the effective stiffness of the RSCFCST columns under eccentric compression is proposed based on the moment magnifier method, and verification of this method is performed using the test data and FE analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ying Guo ◽  
Yufen Zhang

This paper presented a comparative study of concrete-filled steel tubular (CFST) stub columns with three different confinement types from carbon fiber reinforced polymer (CFRP): outer circular CFRP, inner circular CFRP, and outer square CFRP. The compressive mechanism and physical properties of the composite column were analyzed firstly aiming at investigating the confinement effect of CFRP. Ultimate axial bearing capacity of these three CFRP-confined CFST columns was calculated based on Unified Theory of CFST and elastoplastic limit equilibrium theory, respectively. Meanwhile, the corresponding tests are adopted to validate the feasibility of the two calculation models. Through data analysis, the study confirmed the ultimate strength calculation results of the limit equilibrium method were found to be more reliable and approximate to the test results than those of Unified Theory of CFST. Then axial bearing capacity of the pure CFST column was predicted to evaluate the bearing capacity enhancement ratio of the three types of composite columns. It was demonstrated that the averaged enhancement ratio is 16.4 percent, showing that CFRP-confined CFST columns had a broad engineering applicability. Through a comparative analysis, this study also confirmed that outer circular CFRP had the best confinement effect and outer square CFRP did better than inner circular CFRP. The confinement effect of CFRP increased with the decrease of concrete strength, and it was proportional with relative proportions of CFRP and steel under the same concrete strength.


2018 ◽  
Vol 8 (9) ◽  
pp. 1602 ◽  
Author(s):  
Zhao Yang ◽  
Chengxiang Xu

Local buckling in steel tubes was observed to be capable of reducing the ultimate loads of thin-walled concrete-filled steel-tube (CFST) columns under axial compression. To strengthen the steel tubes, steel bars were proposed in this paper to be used as stiffeners fixed onto the tubes. Static-loading tests were conducted to study the compression behavior of square thin-walled CFST columns with steel bar stiffeners placed inside or outside the tube. The effect and feasibility of steel bar stiffeners were studied through the analysis of failure mode, load–displacement relationship, ultimate load, ductility, and local buckling. Different setting methods of steel bars were compared as well. The results showed that steel-bar stiffeners proposed in this paper can be effective in delaying local buckling as well as increasing the bearing capacity of the columns, but will decrease the ductility of the columns. In order to obtain a higher bearing capacity of columns, steel bars with low stiffness should be placed inside and steel bars with high stiffness should be placed outside of the steel tubes. The study is helpful in providing reference to the popularization and application of this new structural measure to avoid or delay the local buckling of thin-walled CFST columns.


2012 ◽  
Vol 166-169 ◽  
pp. 1614-1619 ◽  
Author(s):  
Wen Yue Qin ◽  
Yu Liang Chen ◽  
Zong Ping Chen

In order to reveal the flexural behavior of normal section of steel reinforced recycled coarse aggregate concrete beams,6 steel reinforced recycled concrete beams were designed for flexural test,the study mainly considered the impact of coarse aggregate replacement rates and concrete strength grade two changing parameters on the flexural behavior of steel reinforced recycled coarse aggregate concrete beams. Through this test, the whole mechanical process、crack distribution and failure behavior of this kind of specimens were observed, and obtained the stress-strain distribution curves、the ultimate bearing capacity and load-displacement curves parameters. Based on the study measurement data, deeply analyzed the impact of coarse aggregate replacement rates and concrete strength grade on the flexural behavior of steel reinforced recycled coarse aggregate concrete beams. The result shows that: steel reinforced recycled coarse aggregate concrete beams’ failure pattern was similar to normal SRC beams, during loading process the section strain agreed with the plane-section assumption, and the beams have good bearing capacity and deformation performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Hongyao Liu ◽  
Min Lei ◽  
Bowang Chen

We propose a new method to strengthen structural masonry. To study on the axial compression behavior of masonry columns’ strengthening with a bamboo scrimber bar mesh mortar layer, axial compression tests of twelve masonry columns have been completed: nine strengthened columns and three unstrengthened columns. The failure process, bearing capacity, and failure mode are carried out. The strengthening method of bamboo scrimber bar mesh mortar layer permits the upgrade of the columns’ bearing capacity. The effects of bamboo bar ratio and mortar strengthening ratio on bearing capacity of the reinforced columns are compared. We propose the method for calculating the axial bearing capacity of such a reinforced column. The calculation results agree well with the experimental results, and the research results are available for engineering application.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2482
Author(s):  
Weining Duan ◽  
Jian Cai ◽  
Xu-Lin Tang ◽  
Qing-Jun Chen ◽  
Chun Yang ◽  
...  

The axial compressive behaviour of an innovative type of square concrete filled steel tube (CFST) column to reinforced concrete (RC) beam joint was experimentally investigated in this paper. The innovative joint was designed such that (i) the steel tubes of the CFST columns were completely interrupted in the joint region, (ii) the longitudinal reinforcements from the RC beams could easily pass through the joint area and (iii) a reinforcement cage, including a series of reinforcement meshes and radial stirrups, was arranged in the joint area to strengthen the mechanical performance of the joint. A two-stage experimental study was conducted to investigate the behaviour of the innovative joint under axial compression loads, where the first stage of the tests included three full-scale innovative joint specimens subjected to axial compression to assess the feasibility of the joint detailing and propose measures to further improve its axial compressive behaviour, and the second stage of the tests involved 14 innovative joint specimens with the improved detailing to study the effect of the geometric size of the joint, concrete strength and volume ratio of the steel meshes on the bearing strengths of the joints. It was generally found from the experiments that (i) the innovative joint is capable of achieving the design criterion of the ‘strong joint-weak member’ with appropriate designs, and (ii) by decreasing the height factor and increasing the volume ratio of the steel meshes, the axial compressive strengths of the joints significantly increased, while the increase of the length factor is advantageous but limited to the resistances of the joint specimens. Because of the lack of existing design methods for the innovative joints, new design expressions were proposed to calculate the axial compression resistances of the innovative joints subjected to bearing loads, with the local compression effect, the confinement effect provided by the multi-layers of steel meshes and the height effect of concrete considered. It was found that the proposed design methods were capable of providing accurate and safe resistance predictions for the innovative joints.


Author(s):  
Xindong Ding ◽  
Shuqing Wang ◽  
Yu Liu ◽  
Zepeng Zheng

Axial compression tests were carried out on 6 square steel tube confined concrete short columns and 6 BFRP square pipe confined concrete axial compression tests. The concrete strength grades were C30, C40, and C50. The test results show that the failure modes of steel pipe and BFRP pipe are obviously different, and the BFRP pipe undergoes brittle failure. Compared with the short columns of concrete confined by BFRP pipes, the ultimate bearing capacity of axial compression is increased by -76.46%, -76.01%, and -73.06%, and the ultimate displacements are -79.20%, -80.78%, -71.71%.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun-Xin Li ◽  
Jian-Tao Wang ◽  
Qing Sun ◽  
Yan-Ru Wu ◽  
Shi-Ming Zhou ◽  
...  

This paper systematically investigated the axial compression behavior of circular concrete-filled high-strength thin-walled steel tubular (CFHTST) columns with out-of-code diameter-to-thickness (D/t) ratios. The axial compression test was first conducted to examine the failure mode, load-displacement curves, and composite mechanism effect. The finite element (FE) model was thereafter established to perform full-range analysis on the load versus displacement curve as well as the interaction behavior, where the parametric study was performed to investigate the influences of the material strengths and geometric sizes. Subsequently, the applicability of typical design methods was evaluated, and a revised equation for determining strain εscy corresponding to ultimate strength was established to assess the plastic deformation capacity of CFHTST columns. Finally, a theoretical model for calculating axial bearing capacity was derived based on unified twin-shear strength theory by considering the influence of intermediate principal stress. The research results indicate that a relatively high confine effect can be guaranteed for CFHTST columns under out-of-code D/t ratios, given that the ratio Nu/Nnom between the measured capacity (Nu) and nominal cross-sectional capacity (Nnom) mainly distributes within 1.179∼1.292; the full-range analysis reflects that the axial load-deformation curve can be distinguished by four various loading stages; the scope b = 0.3∼0.55 of intermediate stress coefficient is generally suggested for predicting axial strength of circular CFST columns within an error of ±5%. The abovementioned study can provide the meaningful design reference for the analysis and application of CFHTST columns.


Sign in / Sign up

Export Citation Format

Share Document