scholarly journals Grain Size Effects in Selective Laser Melted Fe-Co-2V

2019 ◽  
Vol 9 (18) ◽  
pp. 3701 ◽  
Author(s):  
Wesley Everhart ◽  
Joseph Newkirk

The material science of additive manufacturing (AM) has become a significant topic due to the unique way in which the material and geometry are created simultaneously. Major areas of research within inorganic materials include traditional structural materials, shape memory alloys, amorphous materials, and some new work in intermetallics. The unique thermal profiles created during selective laser melting (SLM) may provide new opportunities for processing intermetallics to improve mechanical and magnetic performance. A parameter set for the production of Fe-Co-2V material with additive manufacturing is developed and efforts are made to compare the traditional wrought alloy to the AM version of the same chemistry. Evaluation includes magnetic properties, composition, and phase as a function of thermal history, as well as mechanical performance. Results show significant similarities in microstructure between AM and wrought materials, as well as mechanical and magnetic performance. Property trends are evaluated as a function of grain size and show effects similar to the Hall–Petch strengthening observed in wrought material, though with some underprediction of the strength. Magnetic properties qualitatively follow the expected trends but demonstrate some deviation from wrought material, which is still unexplained.

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1982
Author(s):  
Suna Cha ◽  
Hongliang Hou ◽  
Yanling Zhang

In the friction stir welding (FSW) process, the final performance of weld joints is determined by microstructures influenced mainly by the heat input and mechanical deformation. In this research, the effects of FSW parameters, rotation speeds, and welding passes, on microstructure and mechanical properties of AZ31 alloy were systematically and comparatively studied. It was found that the microstructure at the joint center with multi-pass FSW could obtain a smaller average grain size compared with the single pass. The differences of the grain size were reduced significantly when the samples experienced the double-side FSW process. The mechanical performance results showed that the optimum strength (315 MPa) was achieved through the double-side FSW process with a rotation speed of 500 r/min and welding speed of 60 mm/min. The mechanism of the parameters and double-sided process on mechanical properties of the joint samples was elaborated.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 479-484
Author(s):  
Daniel P Maxbauer ◽  
Mark D Shapley ◽  
Christoph E Geiss ◽  
Emi Ito

We present two hypotheses regarding the evolution of Holocene climate in the Northern Rocky Mountains that stem from a previously unpublished environmental magnetic record from Jones Lake, Montana. First, we link two distinct intervals of fining magnetic grain size (documented by an increasing ratio of anhysteretic to isothermal remanent magnetization) to the authigenic production of magnetic minerals in Jones Lake bottom waters. We propose that authigenesis in Jones Lake is limited by rates of groundwater recharge and ultimately regional hydroclimate. Second, at ~8.3 ka, magnetic grain size increases sharply, accompanied by a drop in concentration of magnetic minerals, suggesting a rapid termination of magnetic mineral authigenesis that is coeval with widespread effects of the 8.2 ka event in the North Atlantic. This association suggests a hydroclimatic response to the 8.2 ka event in the Northern Rockies that to our knowledge is not well documented. These preliminary hypotheses present compelling new ideas that we hope will both highlight the sensitivity of magnetic properties to record climate variability and attract more work by future research into aridity, hydrochemical response, and climate dynamics in the Northern Rockies.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Manel Missaoui ◽  
Sandrine Coste ◽  
Maud Barré ◽  
Anthony Rousseau ◽  
Yaovi Gagou ◽  
...  

Exclusive and unprecedented interest was accorded in this paper to the synthesis of BiFeO3 nanopowders by the polyol process. The synthesis protocol was explored and adjusted to control the purity and the grain size of the final product. The optimum parameters were carefully established and an average crystallite size of about 40 nm was obtained. XRD and Mössbauer measurements proved the high purity of the synthesized nanostructurated powders and confirmed the persistence of the rhombohedral R3c symmetry. The first studies on the magnetic properties show a noticeable widening of the hysteresis loop despite the remaining cycloidal magnetic structure, promoting the enhancement of the ferromagnetic order and consequently the magnetoelectric coupling compared to micrometric size powders.


1999 ◽  
Vol 577 ◽  
Author(s):  
Q. Chen ◽  
B. M. Ma ◽  
B. Lu ◽  
M. Q. Huang ◽  
D. E. Laughlin

ABSTRACTThe phase transformation and the exchange coupling in (Ndo095Lao005)9.5FebaICOsNb 2BI05 have been investigated. Nanocomposites were obtained by treating amorphous precursors at temperatures ranging from 650TC to 9500C for 10 minutes. The magnetic properties were characterized via the vibrating sample magnetometer (VSM). X-ray diffraction (XRD), thermomagnetic analysis (TMA), and transmission electron microscopy (TEM) were used to perform phase identification, measure grain size, and analyze phase distribution. The strength of the exchange coupling between the magnetically hard and soft phases in the corresponding nanocomposite was analyzed via the AM-versus-H plot. It was found that the remanence (Br), coercivity (Hci), and maximum energy product (BHmax) obtained were affected by the magnetic phases present as well as the grain size of constituent phases and their distribution. The optimal magnetic performance, BHm, occurred between 700°C to 750°C, where the crystallization has completed without excessive grain growth. TMA and TEM indicated that the system was composed of three phases at this point, Nd2(Fe Co) 14B, ca-Fe, and Fe3B. The exchange coupling interaction among these phases was consistently described via the AM-versus-H plot up to 750°C. The Br, Hci, and BHmax degraded severely when the thermal treatment temperature increased from 750°C. This degradation may be attributed to the grain growth of the main phases, from 45 to 68nm, and the development of precipitates, which grew from 5nm at 750°C to 12nm at 850°C. Moreover, the amount of the precipitates was found to increase with the thermal treatment temperatures. The precipitates, presumably borides, may cause a decrease in the amount of the a-Fe and Fe 3B and result in a redistribution of the Co in the nanocomposites. The increase of the Co content in the Nd 2(Fe Co) 14B may explain the increase of its Curie temperature with the thermal treatment temperatures. In this paper, we examine the impacts of these factors on the magnetic properties of (Ndo 95Lao 05)9 5FebaICosNb2B10.5 nanocomposite.


2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


2007 ◽  
Vol 534-536 ◽  
pp. 1389-1392
Author(s):  
Young Jung Lee ◽  
Baek Hee Lee ◽  
Gil Su Kim ◽  
Kyu Hwan Lee ◽  
Young Do Kim

Magnetic properties of nanostructured materials are affected by the microstructures such as grain size (or particle size), internal strain and crystal structure. Thus, it is necessary to study the synthesis of nanostructured materials to make significant improvements in their magnetic properties. In this study, nanostructured Fe-20at.%Co and Fe-50at.%Co alloy powders were prepared by hydrogen reduction from the two oxide powder mixtures, Fe2O3 and Co3O4. Furthermore, the effect of microstructure on the magnetic properties of hydrogen reduced Fe-Co alloy powders was examined using XRD, SEM, TEM, and VSM.


Sign in / Sign up

Export Citation Format

Share Document