scholarly journals Thermo-Mechanical Properties of PLA/Short Flax Fiber Biocomposites

2019 ◽  
Vol 9 (18) ◽  
pp. 3797 ◽  
Author(s):  
Laura Aliotta ◽  
Vito Gigante ◽  
Maria-Beatrice Coltelli ◽  
Patrizia Cinelli ◽  
Andrea Lazzeri ◽  
...  

In this work, biocomposites based on poly(lactic acid) (PLA) and short flax fibers (10–40 wt.%) were produced by extrusion and characterized in terms of thermal, mechanical, morphological, and thermo-mechanical properties. Analytical models were adopted to predict the tensile properties (stress at break and elastic modulus) of the composites, and to assess the matrix/fiber interface adhesion. The resulting composites were easily processable by extrusion and injection molding up to 40 wt.% of flax fibers. It was observed that despite any superficial treatment of fibers, the matrix/fiber adhesion was found to be sufficiently strong to ensure an efficient load transfer between the two components obtaining composites with good mechanical properties. The best mechanical performance, in terms of break stress (66 MPa), was obtained with 20 wt.% of flax fibers. The flax fiber acted also as nucleating agent for PLA, leading to an increment of the composite stiffness and, at 40 wt.% of flax fibers, improving the elastic modulus decay near the PLA glass transition temperature.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4080
Author(s):  
Laura Aliotta ◽  
Alessandro Vannozzi ◽  
Daniele Bonacchi ◽  
Maria-Beatrice Coltelli ◽  
Andrea Lazzeri

In this work, two different typologies of hazelnuts shell powders (HSPs) having different granulometric distributions were melt-compounded into poly(lactic acid) (PLA) matrix. Different HSPs concentration (from 20 up to 40 wt.%) were investigated with the aim to obtain final biocomposites with a high filler quantity, acceptable mechanical properties, and good melt fluidity in order to be processable. For the best composition, the scale-up in a semi-industrial extruder was then explored. Good results were achieved for the scaled-up composites; in fact, thanks to the extruder venting system, the residual moisture is efficiently removed, guaranteeing to the final composites improved mechanical and melt fluidity properties, when compared to the lab-scaled composites. Analytical models were also adopted to predict the trend of mechanical properties (in particular, tensile strength), also considering the effect of HSPs sizes and the role of the interfacial adhesion between the fillers and the matrix.


2021 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Dionisio Badagliacco ◽  
Vincenzo Fiore ◽  
Carmelo Sanfilippo ◽  
Antonino Valenza

This paper aims to investigate the ability of an eco-friendly and cheap treatment based on sodium acetate solutions to improve the mechanical properties of flax fiber-reinforced composites. Flax fibers were treated for 5 days (i.e., 120 h) at 25 °C with mildly alkaline solutions at 5%, 10% and 20% weight content of the sodium salt. Quasi-static tensile and flexural tests, Charpy impact tests and dynamical mechanical thermal (DMTA) tests were carried out to evaluate the mechanical properties of the resulting composites. Fourier transform infrared analysis (FTIR) was used to evaluate the chemical modification on the fibers surface due to the proposed treatment, whereas scanning electron microscope (SEM) and helium pycnometry were used to get useful information about the morphology of composites. It was found that the treatment with 5% solution of sodium acetate leads to the best mechanical performance and morphology of flax fiber-reinforced composites. SEM analysis confirmed these findings highlighting that composites reinforced with flax fibers treated in 5% sodium acetate solution show an improved morphology compared to the untreated ones. On the contrary, detrimental effects on the morphology as well as on the mechanical performance of composites were achieved by increasing the salt concentration of the treating solution.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1549
Author(s):  
Laura Aliotta ◽  
Vito Gigante ◽  
Patrizia Cinelli ◽  
Maria-Beatrice Coltelli ◽  
Andrea Lazzeri

In this paper, the production and the characterization of poly (lactic) acid (PLA)-based composites containing different amounts (from 10 wt.% to 25 wt.%) of ultra-short cellulose fibers (Arbocel 600 BE/PU) have been investigated. On the basis of a previous study, it was observed that the addition of the cellulose fibers led to an embrittlement of the composite. Consequently, in order to obtain a composite with enhanced impact resistance and elongation at break, the effect of the Einar 101 addition (a bio-based dispersing aid additive) was analyzed. The role of the adhesion between the fiber and the matrix, coupled with a better fiber dispersion, was thus evaluated. Also, the consequences on the final mechanical properties (tensile and impact test) caused by the Einar addition were investigated. Analytical models were also applied in order to obtain an evaluation of the variation of the interfacial shear stress (IFSS) (strictly correlated to the fiber-matrix adhesion) caused by the Einar introduction. Furthermore, due to the very low aspect ratio of the Arbocel fibers, a suitable Bader and Boyer model variation was adopted in order to have a better quantitative estimation of the IFSS value.


Author(s):  
Jun Shi ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Shear strength of fibre-matrix adhesive interface is crucial important to the mechanical performance of fibre-reinforced plastic pipes and fittings, due to its function for load transfer between the fibre and the matrix. In this study, pull-out tests of steel-polymer specimens were carried out with different embedded lengths. Ultrasonic scanning was adopted to monitor the failure procedure of the interface. From the analysis of UT scanning graphs, it could be determined that the studied steel-polymer interface failed rapidly on the whole embedded length under the maximal pull-out force, but not in the manner that crack initiated from a stress concentration point under a relatively small pull-out force and then propagated gradually. Different kinds of pull-out analytical models were discussed. Finally the analytical model of yielding interface was applied to characterize the steel-polymer interfacial adhesive property. Combing with experimental results of pull-out tests of different embedded lengths, the nominal bond shear strength was calculated out.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1124
Author(s):  
Zhifang Liang ◽  
Hongwu Wu ◽  
Ruipu Liu ◽  
Caiquan Wu

Green biodegradable plastics have come into focus as an alternative to restricted plastic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison, random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and molding. The experimental results show that continuous long sisal fiber/PLA premixes could be successfully obtained from this pre-blending process. It was found that the presence of long sisal fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate in supporting the load applied to the composite material. However, when comparing the mechanical properties of the two composite materials, the poor compatibility between the fiber and the matrix made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and impact performance of LSFCs had been improved considerably versus SSFCs.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2133
Author(s):  
Helena Oliver-Ortega ◽  
Josep Tresserras ◽  
Fernando Julian ◽  
Manel Alcalà ◽  
Alba Bala ◽  
...  

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2007 ◽  
Vol 330-332 ◽  
pp. 907-910
Author(s):  
Fa Ming Zhang ◽  
Jiang Chang ◽  
Jian Xi Lu ◽  
Kai Li Lin

Attempt to increase the mechanical properties of porous bioceramics, a dense/porous structured β-TCP bioceramics that mimic the characteristics of nature bone were fabricated. Experimental results show that the dense/porous structured β-TCP bioceramics demonstrated excellent mechanical properties with compressive strength up to 74 MPa and elastic modulus up to 960 MPa, which could be tailored by the dense/porous cross-sectional area ratio obeying the rule of exponential growth. The interface between the dense and porous bioceramics is connected compactly and tightly with some micropores distributed in the matrix of both porous and dense counterparts. The dense/porous structure of β-TCP bioceramics may provide an effective way to increase the mechanical properties of porous bioceramics for bone regeneration at weight bearing sites.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7295
Author(s):  
Hom Nath Dhakal ◽  
Chulin Jiang ◽  
Moumita Sit ◽  
Zhongyi Zhang ◽  
Moussa Khalfallah ◽  
...  

The aim of this study was to evaluate the moisture absorption behaviour and its influence on the mechanical properties of newly developed sandwich biocomposites with flax fibre-reinforced poly-lactic acid (PLA) face sheets and soft cork as the core material. Three different types of sandwich biocomposite laminates comprised of different layup configurations, namely, non-woven flax/PLA (Sample A), non-woven flax/PLA and cork as core (Sample B) and non-woven flax/paper backing/PLA, cork as core (Sample C), were fabricated. In order to evaluate the influence of moisture ingress on the mechanical properties, the biocomposites were immersed in seawater for a period of 1200 h. The biocomposites (both dry and water immersed) were then subjected to tensile, flexural and low-velocity falling weight impact tests. It was observed from the experimental results that the moisture uptake significantly influenced the mechanical properties of the biocomposites. The presence of the cork and paper in sample C made it more susceptible to water absorption, reaching a value of 34.33%. The presence of cork in the core also has a considerable effect on the mechanical, as well as energy dissipation, behaviours. The results of sample A exhibited improved mechanical performance in both dry and wet conditions compared to samples B and C. Sample A exhibits 32.6% more tensile strength and 81.4% more flexural strength in dry conditions than that in sample C. The scanning electron microscopy (SEM) and X-ray micro-CT images revealed that the failure modes observed are a combination of matrix cracking, core crushing and face core debonding. The results from this study suggest that flax/PLA sandwich biocomposites can be used in various lightweight applications with improved environmental benefits.


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


Sign in / Sign up

Export Citation Format

Share Document