scholarly journals Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis

Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 152
Author(s):  
Teresita Padilla-Benavides ◽  
Pablo Reyes-Gutierrez ◽  
Anthony N. Imbalzano

Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 520
Author(s):  
Wenfeng Nie ◽  
Jinyu Wang

As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsis thaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.


2009 ◽  
Vol 29 (18) ◽  
pp. 4949-4958 ◽  
Author(s):  
Stephanie J. Ellison-Zelski ◽  
Natalia M. Solodin ◽  
Elaine T. Alarid

ABSTRACT Gene expression results from the coordinated actions of transcription factor proteins and coregulators. Estrogen receptor alpha (ERα) is a ligand-activated transcription factor that can both activate and repress the expression of genes. Activation of transcription by estrogen-bound ERα has been studied in detail, as has antagonist-induced repression, such as that which occurs by tamoxifen. How estrogen-bound ERα represses gene transcription remains unclear. In this report, we identify a new mechanism of estrogen-induced transcriptional repression by using the ERα gene, ESR1. Upon estrogen treatment, ERα is recruited to two sites on ESR1, one distal (ENH1) and the other at the proximal (A) promoter. Coactivator proteins, namely, p300 and AIB1, are found at both ERα-binding sites. However, recruitment of the Sin3A repressor, loss of RNA polymerase II, and changes in histone modifications occur only at the A promoter. Reduction of Sin3A expression by RNA interference specifically inhibits estrogen-induced repression of ESR1. Furthermore, an estrogen-responsive interaction between Sin3A and ERα is identified. These data support a model of repression wherein actions of ERα and Sin3A at the proximal promoter can overcome activating signals at distal or proximal sites and ultimately decrease gene expression.


Blood ◽  
2008 ◽  
Vol 112 (2) ◽  
pp. 406-414 ◽  
Author(s):  
Tomoyuki Sawado ◽  
Jessica Halow ◽  
Hogune Im ◽  
Tobias Ragoczy ◽  
Emery H. Bresnick ◽  
...  

Abstract Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired β-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Δ locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the β-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and ΔLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the ΔLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with β-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level β-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.


2021 ◽  
Author(s):  
Ishak D. Irwan ◽  
Bryan R. Cullen

AbstractWe have previously reported that the normally essential step of integration of the HIV-1 proviral DNA intermediate into the host cell genome becomes dispensable in T cells that express the Human T cell leukemia virus 1 (HTLV-1) Tax protein. The rescue of integrase (IN) deficient HIV-1 replication by Tax results from the strong activation of transcription from the long terminal repeat (LTR) promoter on episomal HIV-1 DNA, an effect that is closely correlated with the recruitment of activating epigenetic marks, such as H3Ac, and depletion of repressive epigenetic marks, such as H3K9me3, from chromatinized unintegrated proviruses. In addition, activation of transcription from unintegrated HIV-1 DNA coincides with the recruitment of NF-kB to the two NF-kB binding sites found in the HIV-1 LTR enhancer. Here we report that the recruitment of NF-kB to unintegrated viral DNA precedes, and is a prerequisite for, Tax-induced changes in epigenetic marks, so that an IN-HIV-1 mutant lacking both LTR NF-kB sites is entirely non-responsive to Tax and fails to undergo the epigenetic changes listed above. We also report that heterologous promoters introduced into IN-HIV-1-based vectors are transcriptionally active even in the absence of Tax. Finally, we failed to reproduce a recent report arguing that heterologous promoters introduced into IN-vectors based on HIV-1 are more active if the HIV-1 promoter and enhancer, located in the LTR U3 region, are deleted, in a so-called self inactivating or SIN lentivector design.ImportanceIntegrase-deficient expression vectors based on HIV-1 are becoming increasingly popular as tools for gene therapy in vivo due to their inability to cause insertional mutagenesis. However, many IN-lentiviral vectors are able to achieve only low levels of gene expression and methods to increase this low level have not been extensively explored. Here we analyze how the HTLV-1 Tax protein is able to rescue the replication of IN-HIV-1 in T cells and describe IN-lentiviral vectors that are able to express a heterologous gene effectively.


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1113-1124 ◽  
Author(s):  
K.M. Bhat ◽  
G. Farkas ◽  
F. Karch ◽  
H. Gyurkovics ◽  
J. Gausz ◽  
...  

The GAGA protein of Drosophila was first identified as a stimulatory factor in in vitro transcription assays using the engrailed and Ultrabithorax promoters. Subsequent studies have suggested that the GAGA factor promotes transcription by blocking the repressive effects of histones; moreover, it has been shown to function in chromatin remodeling, acting together with other factors in the formation of nuclease hypersensitive sites in vitro. The GAGA factor is encoded by the Trithorax-like locus and in the studies reported here we have used the maternal effect allele Trl13C to examine the functions of the protein during embryogenesis. We find that GAGA is required for the proper expression of a variety of developmental loci that contain GAGA binding sites in their upstream regulatory regions. The observed disruptions in gene expression are consistent with those expected for a factor involved in chromatin remodeling. In addition to facilitating gene expression, the GAGA factor appears to have a more global role in chromosome structure and function. This is suggested by the spectrum of nuclear cleavage cycle defects observed in Trl13C embryos. These defects include asynchrony in the cleavage cycles, failure in chromosome condensation, abnormal chromosome segregation and chromosome fragmentation. These defects are likely to be related to the association of the GAGA protein with heterochromatic satellite sequences which is observed throughout the cell cycle.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Sarah Franklin ◽  
Haodong Chen ◽  
Scherise Mitchell-Jordan ◽  
Shuxun Ren ◽  
Peipei Ping ◽  
...  

Nuclear DNA is packaged around the octameric nucleosome core particle, constituting the basic building block of chromatin. Non-nucleosome chromatin structural molecules have been shown to induce higher order packaging of DNA into structurally compact and inactive heterochromatin, or loosely packed and active euchromatin. These chromatin remodeling events are thought to establish a cell type specific pattern of gene expression. During the development of cardiac hypertrophy and failure, genes normally only expressed during development are re-activated. While a number of transcription factors involved in these changes in fetal gene expression have been identified, the means for genome-wide structural remodeling of DNA are unknown. To identify factors controlling genomic plasticity in cardiomyocytes, we used mass spectrometry to quantify chromatin-associated proteins from cardiac nuclei during stages of hypertrophy and failure in the mouse. Adult mice were subjected to cardiac pressure overload by transverse aortic constriction. Chromatin was fractionated from cardiac nuclei and DNA-bound proteins were acid extracted and analyzed by mass spectrometry. We measured chromatin occupancy patterns for >300 proteins during distinct stages of heart failure. To explore the isoform specific roles of individual chromatin structural proteins, we used siRNA to knock-down expression of two high mobility group proteins (HMGB1 and 2) exhibiting altered expression in the hypertrophic heart. Loss of HMGB2 (but not HMGB1) induced robust hypertrophic growth in cardiomyocytes. qRT-PCR analyses demonstrated that HMGB2 is responsible for some but not all changes in the fetal gene program (ANF increased 150% and SERCA decreased 20%, whereas α- and β-MHC were unchanged). To further explore the endogenous regions of the genome under control of HMGB2 packing, we performed microarrays following HMGB2 knockdown. Hypertrophy or HMGB2 knock-down induced global chromatin remodeling conducive to gene expression, as measured by histone post-translational modifications and the ratio of core to linker histones. These studies reveal a novel role of HMGB2 to inhibit hypertrophic growth and provide insights into general principles for genome-wide chromatin remodeling.


2021 ◽  
Author(s):  
Jing Nie ◽  
Yoshitomo Ueda ◽  
Alexander Solivais ◽  
Eri Hashino

Abstract Mutations in the chromatin remodeling enzyme CHD7 cause CHARGE syndrome, which affects multiple organs including the inner ear. We investigated how CHD7 mutations affect otic development in human inner ear organoids. We found loss of CHD7 or its chromatin remodeling activity leads to complete absence of hair cells and supporting cells, which can be explained by dysregulation of key otic development-associated genes in mutant otic progenitors. Further analysis of the mutant otic progenitors suggested that CHD7 can regulate otic genes through a chromatin remodeling-independent mechanism. Results from transcriptome profiling of hair cells revealed disruption of deafness gene expression as a potential underlying mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-differentiating CHD7 knockout and wild-type cells in chimeric organoids partially rescued mutant phenotypes by restoring otherwise severely dysregulated otic genes. Taken together, our results suggest that CHD7 plays a critical role in regulating human otic lineage differentiation and deafness gene expression.


2020 ◽  
Vol 21 (18) ◽  
pp. 6816
Author(s):  
Alberto J. López ◽  
Julia K. Hecking ◽  
André O. White

Long-term memory formation requires coordinated regulation of gene expression and persistent changes in cell function. For decades, research has implicated histone modifications in regulating chromatin compaction necessary for experience-dependent changes to gene expression and cell function during memory formation. Recent evidence suggests that another epigenetic mechanism, ATP-dependent chromatin remodeling, works in concert with the histone-modifying enzymes to produce large-scale changes to chromatin structure. This review examines how histone-modifying enzymes and chromatin remodelers restructure chromatin to facilitate memory formation. We highlight the emerging evidence implicating ATP-dependent chromatin remodeling as an essential mechanism that mediates activity-dependent gene expression, plasticity, and cell function in developing and adult brains. Finally, we discuss how studies that target chromatin remodelers have expanded our understanding of the role that these complexes play in substance use disorders.


2020 ◽  
Vol 16 (6) ◽  
pp. 20200078
Author(s):  
Maria Stager ◽  
Zachary A. Cheviron

Endotherms defend their body temperature in the cold by employing shivering (ST) and/or non-shivering thermogenesis (NST). Although NST is well documented in mammals, its importance to avian heat generation is unclear. Recent work points to a prominent role for the sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) in muscular NST. SERCA's involvement in both ST and NST, however, posits a tradeoff between these two heat-generating mechanisms. To explore this tradeoff, we assayed pectoralis gene expression of adult songbirds exposed to chronic temperature acclimations. Counter to mammal models, we found that cold-acclimated birds downregulated the expression of sarcolipin ( SLN ), a gene coding for a peptide that promotes heat generation by uncoupling SERCA Ca 2+ transport from ATP hydrolysis, indicating a reduced potential for muscular NST. We also found differential expression of many genes involved in Ca 2+ cycling and muscle contraction and propose that decreased SLN could promote increased pectoralis contractility for ST. Moreover, SLN transcript abundance negatively correlated with peak oxygen consumption under cold exposure (a proxy for ST) across individuals, and higher SLN transcript abundance escalated an individual's risk of hypothermia in acute cold. Our results therefore suggest that SLN-mediated NST may not be an important mechanism of—and could be a hindrance to—avian thermoregulation in extreme cold.


Sign in / Sign up

Export Citation Format

Share Document