scholarly journals Antiarrhythmic Properties of Elsholtzia ciliata Essential Oil on Electrical Activity of the Isolated Rabbit Heart and Preferential Inhibition of Sodium Conductance

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 948
Author(s):  
Regina Mačianskienė ◽  
Lauryna Pudžiuvelytė ◽  
Jurga Bernatonienė ◽  
Mantė Almanaitytė ◽  
Antanas Navalinskas ◽  
...  

Elsholtzia ciliata essential oil (E. ciliata) has been developed in Lithuania and internationally patented as exerting antiarrhythmic properties. Here we demonstrate the pharmacological effects of this herbal preparation on cardiac electrical activity. We used cardiac surface ECG and a combination of microelectrode and optical mapping techniques to track the action potentials (APs) in the Langendorff-perfused rabbit heart model during atrial/endo-/epi-cardial pacing. Activation time, conduction velocity and AP duration (APD) maps were constructed. E. ciliata increased the QRS duration and shortened QT interval of ECG at concentrations of 0.01–0.1 μL/mL, whereas 0.3 μL/mL (0.03%) concentration resulted in marked strengthening of changes. In addition, the E. ciliata in a concentration dependent manner reduced the AP upstroke dV/dtmax and AP amplitude as well as APD. A marked attenuation of the AP dV/dtmax and a slowing spread of electrical signals suggest the impaired functioning of Na+-channels, and the effect was use-dependent. Importantly, all these changes were at least partially reversible. Our results indicate that E. ciliata modulates cardiac electrical activity preferentially inhibiting Na+ conductance, which may contribute to its effects as a natural antiarrhythmic medicine.

2017 ◽  
Vol 6 (11) ◽  
pp. 1799
Author(s):  
Gunjan Goyal

The work was undertaken to investigate the phytotoxic potential of essential oil from Melaleuca leucadendra against three weed species, viz., Echinochloa crus-galli, Cyperus rotundus and Leptochloa chinensis. It was observed that volatile oil (0.25-1.5 mg ml-1) of Melaleuca retarded the germination and growth of all the test weeds in a dose-response bioassay conducted under laboratory conditions. Generally, both root and shoot length showed an inhibitory effect in a concentration dependent manner and the maximum effect was observed in C. rotundus, followed by E. crus-galli and L. chinensis. The Melaleuca oil not only affected the germination and seedling growth of the test weeds, but also inhibited the chlorophyll content and dry weight. At the highest dose of Melaleuca oil treatment (1.5 mg ml-1), the chlorophyll content declined by nearly 50% in E. crus-galli and 90% in L. chinensis over the control. Thus, it is concluded that volatile oil possesses phytotoxic potential towards other plants and could be further explored for weed management.


2020 ◽  
Vol 10 (8) ◽  
pp. 2684
Author(s):  
María González-Locarno ◽  
Yarley Maza Pautt ◽  
Alberto Albis ◽  
Edwin Florez López ◽  
Carlos David Grande Tovar

Cape gooseberry (Physalis peruviana L.) is one of the main exotic fruits in demand throughout the world market. However, this fruit has problems with physical and microbial decay causing losses up to thirty percent during post-harvest stage and market storage. As an alternative for conservation, technologies based on edible coatings of biopolymers incorporating essential oils have been developed. In this paper we studied the effect of edible coatings based on chitosan (CS) and Ruta graveolens L. essential oil (RGEO) at different concentrations applied on the surface gooseberries at 18 ± 2 °C. The emulsions exhibited a reduction in the viscosity and the particle size with the increasing in the RGEO amount (from 124.7 cP to 26.0 cP for CS + RGEO 0.5% and CS + RGEO 1.5%, respectively). A lower weight loss was obtained for fruits coated with CS + RGEO 0.5% (12.7%) as compared to the uncoated (15%), while the maturity index increased in a lower amount for CS + RGEO coated than the uncoated fruits. The mesophyll growth was delayed three days after the coating applications for CS + RGEO 1.0% and 1.5%. At day twelve of the coating process, fruits with CS + RGEO 1.5% presented only 3.1 Log UFC/g of aerobic mesophylls and 2.9 Log UFC/g of molds and yeasts, while the uncoated fruits presented 4.2 Log UFC/g of aerobic mesophylls and 4.0 Log UFC/g of molds and yeasts, demonstrating a microbial barrier of the coatings incorporating RGEO in a concentration dependent manner. The CS + RGEO coating also preserve the antioxidant property of case gooseberries after twelve days of treatment under storage according to the 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid) (ABTS) results. It was demonstrated by the ABTS method that T5 antioxidant capacity from day one to day twelve only decreases from 55% to 44%, while in the uncoated fruits (T1) the antioxidant capacity decreased from 65% to 18%. On the other hand, using the DPPH method the reduction was from 73% to 24% for the uncoated samples and 55% to 43% for T5. From the sensorial analysis, we recommend the use of CS + RGEO 0.5% that was still accepted by the panelists after the sixth day of application. These results show the potential application of these coatings as postharvest treatment under storage and low temperature conditions during twelve days of treatment for cape gooseberry fruits.


2014 ◽  
Vol 9 (6) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Rui Jiang ◽  
Liwei Sun ◽  
Yanbing Wang ◽  
Jianzeng Liu ◽  
Xiaodan Liu ◽  
...  

Panax ginseng C.A.Meyer is one of the most valuable traditional Chinese medicines. In this study, the essential oil of ginseng leaves (EOGL), collected using hydrodistillation and analyzed by GC/MS, contained a complex mixture of aliphatic (69.0%), terpenoid (21.5%) and aromatic compounds (2.4%). Among 54 components identified, the major ones were palmitic acid (36.1%), β-farnesene (15.4%), linoleic acid (9.8%) and phytol (5.6%). In the cytotoxicity study, EOGL exhibited obvious cytotoxic activities against different cancer cell lines, including Hela, A549, ZR-75-1, HT-29, SGC7901 and B16 cells. Furthermore, Annexin V-FITC/PI staining assay indicated that EOGL can induce late apoptosis of ZR-75-1 cells, and the percentage of apoptotic cells increased in a concentration-dependent manner (0.9% to 5.6% and 67.4%). In addition to this, we also found that EOGL exhibited weak DPPH radical scavenging (12.0 ± 0.4 mg/mL) and ABTS radical scavenging activities (1.6 ± 0.1 mg/mL), and showed antibacterial activity against the Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and the Gram-negative bacterium, Escherichia coli. The data suggest that EOGL, which possesses important biological activities, especially significant anticancer activity, could be a potential medicinal resource.


1994 ◽  
Vol 266 (6) ◽  
pp. H2220-H2228 ◽  
Author(s):  
H. Kasai ◽  
M. Takanashi ◽  
C. Takasaki ◽  
M. Endoh

The positive inotropic effect (PIE) of endothelin (ET) isoforms, ET-1 and ET-3, was similar in that 1) the PIE was associated with prolongation of isometric contractions, 2) the maximal response was approximately 60% of that to isoproterenol (Isomax), 3) the PIE was associated with acceleration of PI hydrolysis, and 4) it was selectively antagonized by phorbol 12,13-dibutyrate. Because the concentration-response curve for ET-1 was biphasic (whereas that for ET-3 was monophasic), ET-1 had a PIE greater than ET-3 up to 10(-8) M. ET-1 induced a PIE at 3 x 10(-14) M and higher, which reached a plateau of 10-20% of Isomax at 10(-12) M (first phase); the curve became steeper at 10(-9) M and higher (second phase), achieving the maximal response at 10(-7) M to 3 x 10(-7) M. An ETA-selective antagonist, BQ-123, did not affect the PIE of ET-1 up to 10(-7) M; it abolished the first phase at 10(-6) M but did not affect the second phase. BQ-123 at 10(-8) to 10(-6) M antagonized the PIE of ET-3, [Thr2]sarafotoxin S6b, and [Glu9]sarafotoxin S6b in a concentration-dependent manner. The PIE of ET-3 was abolished by 10(-6) M BQ-123. An ETB-selective partial agonist IRL-1620 neither elicited a PIE nor affected the PIE of ET-3. These findings indicate that the PIE of ET receptor agonists on rabbit ventricular myocardium cannot be totally explained by occupancy of the ETA or ETB receptor.


2021 ◽  
Vol 23 (09) ◽  
pp. 945-958
Author(s):  
Durgadevi P ◽  
◽  
Sumathi P ◽  

Essential oils are plant derived concentrates of the secondary metabolites responsible for the aromatic flavor attributing to its various medicinal properties. Fresh Allium sativum (A. sativum) and Allium cepa (A. cepa) were subjected to steam distillation for isolation of essential oil characterized by performing Gas Chromatography – Mass Spectroscopy (GC-MS). Chromatogram of the essential oil depicted the presence diallyl sulfide (5.35%), 2-(2’-carbamoylphenoxy)-butanoic acid (2.64%), 2-ethyl-5-methylthiophene (0.42%), diallyl disulphide (18.76%), 3-(2-thia-4-pentenyl)-1-thia-cyclohex-5-ene (1.09%) and dimethyl tetrasulphide (0.15%), 2,4-dimethylpyrido[2,3-d]pyrimidin-5-one (47.91%), 2,4-Thiazolidinedione (0.01%), 5-chloro-2-hydroxy-1,3-dinitrobenzene (5.93%), 6-Methoxy-1-methyl-3,4-dihydroisoquinoline (47.91%) in A. sativum and A.cepa respectively. Larvicidal activity against third instar larvae of Anopheles stephensi (A. Stephensi) was assessed by following the standard protocol of World Health Organization. The 50% lethality (LC50) of A. stephensi larvae was observed at 265.96 ± 1.88 ppm and 357.14 ± 2.36 ppm of A. sativum and A. cepa essential oil correspondingly. The mortality rate of the larvae was both time and dose dependent. Besides, the in vitro antihemolytic activity of the essential oil was also assessed using Sheep erythrocytes. The erythrocyte lysis was inhibited by the essential oils of both A. sativum and A. cepa in a concentration dependent manner with an IC50 of 427.35 ± 1.23 μl and 549.45 ± 1.38 μl respectively. On a comparative assessment between the essential oils of A. sativum and A. cepa, the former exhibited better larvicidal activity against the disease-causing vector, A. stephensi. Still, both could serve as potent insecticidal agents after further identification of the responsible chemical compound and its mode of action.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1419
Author(s):  
Jirapak Ruttanapattanakul ◽  
Nitwara Wikan ◽  
Kittinan Chinda ◽  
Thanathorn Jearanaikulvanich ◽  
Napatsorn Krisanuruks ◽  
...  

Zingiber ottensii (ZO) is a local plant in Thailand and has been used as a Thai traditional therapy for many conditions. ZO has been reported to exhibit many pharmacological effects, including anti-cancer activity. Nevertheless, its anti-cancer effects explored at the signaling level have not been elucidated in cervical cancer, which is one of the leading causes of fatality in females. We discovered that the essential oil of ZO significantly increased the apoptosis of human cervical cancer cells (HeLa) after 24 h of treatment in a concentration-dependent manner. Our data also clearly demonstrated that ZO essential oil reduced IL-6 levels in the culture supernatants of the cancer cells. Moreover, Western blot analysis clearly verified that cells were induced to undergo apoptotic death via caspase activation upon treatment with ZO essential oil. Interestingly, immunofluorescence studies and Western blot analyses showed that ZO essential oil suppressed epidermal growth factor (EGF)-induced pAkt and pERK1/2 signaling pathway activation. Together, our study demonstrates that ZO essential oil can reduce the proliferation and survival signaling of HeLa cervical cancer cells. Our study provides convincing data that ZO essential oil suppresses the growth and survival of cervical cancer cells, and it may be a potential choice for developing an anti-cancer agent for treating certain cervical cancers.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3791
Author(s):  
Negin Noori ◽  
Ali Khanjari ◽  
Mohammadreza Rezaeigolestani ◽  
Ioannis K. Karabagias ◽  
Sahar Mokhtari

Among the main biodegradable food packaging materials, poly-lactic acid (PLA) is a commercially successful polymer used notably in the food packaging industry. In this study, active PLA films containing different percentage of anise essential oil (AE) (0, 0.5, 1 and 1.5% v/v) were developed, and characterized by physical, mechanical and antibacterial analysis. Based on physical examinations, thermal stability of PLA/AE films was greater than the neat PLA film, and the minimum water vapor permeability (WVP) was recorded for PLA/0.5AE film (1.29 × 10 11 g/m s), while maximum WVP was observed for PLA/1.5AE (2.09 × 1011 g/m s). Moreover, the lightness and yellowness of the composites were decreased by the addition of AE. For the PLA composites with 1.5% AE, the tensile strength decreased by 35% and the elongation break increased by 28.09%, comparing to the pure PLA. According to the antibacterial analysis, the minimum inhibitory concentrations of PLA/AE film were 5 to 100 mg/mL and the active composite could create visible inhibition zones of 14.2 to 19.2 mm. Furthermore, the films containing AE inhibited L. monocytogenes and V. parahaemolyticus in a concentration-dependent manner. The confirmation of the success of the incorporation of EOs into the PLA films was further evaluated using principal component analysis, where positive results were obtained. In this context, our findings suggest the significant potency of AE to be used as an antibacterial agent in active food packaging.


2012 ◽  
Vol 90 (10) ◽  
pp. 1380-1385 ◽  
Author(s):  
Alana F. Pires ◽  
Socorro V. Frota Madeira ◽  
Pedro M.G. Soares ◽  
Claudia M. Montenegro ◽  
Emmanuel P. Souza ◽  
...  

This study investigated the endothelium-dependent vasorelaxant effects of the essential oil of Ocimum gratissimum (EOOG) in aortas and mesenteric vascular beds isolated from rats. EOOG (3–300 µg/mL) relaxed the tonic contractions induced by phenylephrine (0.1 µmol/L) in isolated aortas in a concentration-dependent manner in both endothelium-containing and endothelium-denuded preparations. This effect was partially reversed by L-NAME (100 µmol/L) but not by indomethacin (10 µmol/L) or TEA (5 mmol/L). In mesenteric vascular beds, bolus injections of EOOG (30, 50, 100, and 300 ng) decreased the perfusion pressure induced by noradrenaline (6 µmol/L) in endothelium-intact preparations but not in those treated with deoxycholate. L-NAME (300 µmol/L) but not TEA (1 mmol/L) or indomethacin (3 µmol/L) significantly reduced the vasodilatory response to EOOG at all of the doses tested. Our data showed that EOOG exerts a dose-dependent vasodilatory response in the resistance blood vessels of rat mesenteric vascular beds and in the capacitance blood vessel, the rat aorta. This action is completely dependent on endothelial nitric oxide (NO) release in the mesenteric vascular beds but only partially dependent on NO in the aorta. These novel effects of EOOG highlight interesting differences between resistance and capacitance blood vessels.


1986 ◽  
Vol 250 (5) ◽  
pp. H736-H740
Author(s):  
P. G. Colavita ◽  
P. Wolf ◽  
W. M. Smith ◽  
F. R. Bartram ◽  
M. Hardage ◽  
...  

Recording cardiac electrical activity after a countershock has been limited by amplifier saturation. Modifications to our computer-assisted mapping system allowed us to record electrical activity from 56 epicardial electrodes within 5 ms of the end of a countershock. Modifications included the use of solid-state switches to disconnect the filter section of the amplifiers during the shock and changing the low-frequency response of the amplifiers from 0.1 to 10 Hz to filter out large, low-frequency potentials after the shock. Six-millisecond truncated exponential shocks were delivered between the superior vena cava and right ventricular apex through a quadripolar catheter during normal rhythm in seven dogs. As shocks of increasing voltage were delivered during the T-Q interval, progressively more of the epicardium was directly depolarized. A shock of 109 +/- 17 (SD) V directly depolarized the entire epicardium. Shocks of constant voltage were then delivered with increasing prematurity during diastole. As the ventricles became more refractory with increasing shock prematurity, the amount of epicardium depolarized became progressively less. Thus computer-assisted mapping techniques are capable of measuring the area depolarized by a shock during normal rhythm and may be useful during arrhythmias to improve our understanding of defibrillation and cardioversion.


2010 ◽  
Vol 5 (8) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Weon-Jong Yoon ◽  
Ji-Young Moon ◽  
Ji-Yong Kang ◽  
Gi-Ok Kim ◽  
Nam Ho Lee ◽  
...  

The chemical composition and antiinflammatory activities of hydrodistilled essential oil from Neolitsea sericea leaves (NSE) have been investigated for the first time. The chemical constituents of NSE were analysed by GC-MS and found to include sericenine (32.3%), sabinene (21.0%), trans-β-ocimene (13.3%), β-caryophyllene (4.8%), and 4-terpineol (4.2%). The effects of NSE on nitric oxide (NO), prostaglandin E2 (PGE2), tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages were also examined. Pro-inflammatory cytokine and mediator tests indicated that NSE has excellent dose-dependent inhibitory activities. To further examine the mechanism responsible for the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression by NSE, we examined the effect of NSE on nuclear factor-κB (NF-κB) activation and the phosphorylation of mitogen-activated protein kinases (MAPK). NSE inhibited NF-κB activation by LPS, and this was associated with the abrogation of IκB-α phosphorylation and subsequent decreases in nuclear p50 and p65 protein levels. Further, the phosphorylation of p38, ERK and JNK was suppressed by NSE in a concentration-dependent manner. These results suggest that NSE exerts antiinflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibition of NF-κB activation and MAPK phosphorylation, and, therefore, may be useful for treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document