scholarly journals A Brief Analysis of Proteomic Profile Changes during Zebrafish Regeneration

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Zulvikar Syambani Ulhaq ◽  
William Ka Fai Tse

Unlike mammals, zebrafish are capable to regenerate many of their organs, however, the response of tissue damage varies across tissues. Understanding the molecular mechanism behind the robust regenerative capacity in a model organism may help to identify and develop novel treatment strategies for mammals (including humans). Hence, we systematically analyzed the current literature on the proteome profile collected from different regenerated zebrafish tissues. Our analyses underlining that several proteins and protein families responsible as a component of cytoskeleton and structure, protein synthesis and degradation, cell cycle control, and energy metabolism were frequently identified. Moreover, target proteins responsible for the initiation of the regeneration process, such as inflammation and immune response were less frequently detected. This highlights the limitation of previous proteomic analysis and suggested a more sensitive modern proteomics analysis is needed to unfold the mechanism. This brief report provides a list of target proteins with predicted functions that could be useful for further biological studies.

Author(s):  
Jordan M. Wall ◽  
Ankita Basu ◽  
Elizabeth R.M. Zunica ◽  
Olga S. Dubuisson ◽  
Kathryn Pergola ◽  
...  

Valosin containing protein (VCP) is a hexameric type II AAA ATPase required for several cellular processes including ER-associated degradation, organelle biogenesis, autophagy and membrane fusion. VCP contains three domains: a regulatory N-terminal domain and two ATPase domains (D1 and D2). Mutations in the N-terminal and D1 domains are associated with several degenerative diseases, including Multisystem Proteinopathy (MSP-1) and ALS. However, patients with VCP mutations vary widely in their pathology and clinical penetrance, making it difficult to devise effective treatment strategies. Having a deeper understanding of how each mutation affects VCP function could enhance the prediction of clinical outcomes and design of personalized treatment options. Over-expressing VCP patient mutations in Drosophila has been shown to mimic many pathologies observed in human patients. The power of a genetically tractable model organism coupled with well-established in vivo assays and a relatively short life cycle make Drosophila an attractive system to study VCP disease pathogenesis and novel treatment strategies. Using CRISPR/Cas9, we have generated individual Drosophila knock-in mutants that include nine hereditary VCP disease mutations. We validate that these models display many hallmarks of VCP-mediated degeneration, including progressive decline in mobility, protein aggregate accumulation and defects in lysosomal and mitochondrial function. We also made some novel and unexpected findings, including laminopathies and sex-specific phenotypic differences in several mutants. Taken together, the Drosophila VCP disease models we have generated in this study will be useful for studying the etiology of individual VCP patient mutations and for testing potential genetic and/or pharmacological therapies.


2020 ◽  
Author(s):  
Nora Linscheid ◽  
Alberto Santos ◽  
Pi Camilla Poulsen ◽  
Robert W. Mills ◽  
Christian Stolte ◽  
...  

AbstractThe study of human cardiac pathologies often relies on research conducted in model organisms to gain molecular insight into disease and to develop novel treatment strategies; however, translating findings from model organisms back to human can present a significant challenge, in part due to a lack of knowledge about the differences across species in cardiac protein abundances and their interactions. Here we set out to bridge this knowledge gap by presenting a global analysis of cardiac protein expression profiles in humans and commonly used model organisms. Using quantitative mass spectrometry-based proteomics, we measured the abundance of ~7,000 proteins in samples from the separate chambers of human, pig, horse, rat, mouse and zebrafish hearts. This knowledgebase of cardiac protein signatures is accessible through an online database at: atlas.cardiacproteomics.com. Quantitative comparison of the protein profiles support the pig as model organism of choice for arrhythmogenic right ventricular cardiomyopathy whereas comparison of profiles from the two-chambered zebrafish heart suggests a better resemblance to the right side of mammalian hearts. This proteomics resource facilitates translational prospect of cardiac studies from model organisms to humans by enabling direct comparison of disease-linked protein networks across species.


Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 482
Author(s):  
Irene Paraboschi ◽  
Laura Privitera ◽  
Gabriela Kramer-Marek ◽  
John Anderson ◽  
Stefano Giuliani

Neuroblastoma (NB) is the most common extracranial solid tumour in childhood, accounting for approximately 15% of all cancer-related deaths in the paediatric population1. It is characterised by heterogeneous clinical behaviour in neonates and often adverse outcomes in toddlers. The overall survival of children with high-risk disease is around 40–50% despite the aggressive treatment protocols consisting of intensive chemotherapy, surgery, radiation therapy and hematopoietic stem cell transplantation2,3. There is an ongoing research effort to increase NB’s cellular and molecular biology knowledge to translate essential findings into novel treatment strategies. This review aims to address new therapeutic modalities emerging from preclinical studies offering a unique translational opportunity for NB treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 901
Author(s):  
Ramiz S. Ahmad ◽  
Timothy D. Eubank ◽  
Slawomir Lukomski ◽  
Brian A. Boone

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1392
Author(s):  
Hidaya A. Kader ◽  
Muhammad Azeem ◽  
Suhib A. Jwayed ◽  
Aaesha Al-Shehhi ◽  
Attia Tabassum ◽  
...  

Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.


2020 ◽  
Vol 401 (12) ◽  
pp. 1307-1322
Author(s):  
Gert Bange ◽  
Patricia Bedrunka

AbstractThe guanosine-based second messengers (p)ppGpp and c-di-GMP are key players of the physiological regulation of the Gram-positive model organism Bacillus subtilis. Their regulatory spectrum ranges from key metabolic processes over motility to biofilm formation. Here we review our mechanistic knowledge on their synthesis and degradation in response to environmental and stress signals as well as what is known on their cellular effectors and targets. Moreover, we discuss open questions and our gaps in knowledge on these two important second messengers.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


2020 ◽  
pp. 972-987
Author(s):  
Ramez N. Eskander ◽  
Julia Elvin ◽  
Laurie Gay ◽  
Jeffrey S. Ross ◽  
Vincent A. Miller ◽  
...  

PURPOSE High-grade neuroendocrine cervical cancer (HGNECC) is an uncommon malignancy with limited therapeutic options; treatment is patterned after the histologically similar small-cell lung cancer (SCLC). To better understand HGNECC biology, we report its genomic landscape. PATIENTS AND METHODS Ninety-seven patients with HGNECC underwent comprehensive genomic profiling (182-315 genes). These results were subsequently compared with a cohort of 1,800 SCLCs. RESULTS The median age of patients with HGNECC was 40.5 years; 83 patients (85.6%) harbored high-risk human papillomavirus (HPV). Overall, 294 genomic alterations (GAs) were identified (median, 2 GAs/sample; average, 3.0 GAs/sample, range, 0-25 GAs/sample) in 109 distinct genes. The most frequently altered genes were PIK3CA (19.6% of cohort), MYC (15.5%), TP53 (15.5%), and PTEN (14.4%). RB1 GAs occurred in 4% versus 32% of HPV-positive versus HPV-negative tumors ( P < .0001). GAs in HGNECC involved the following pathways: PI3K/AKT/mTOR (41.2%); RAS/MEK (11.3%); homologous recombination (9.3%); and ERBB (7.2%). Two tumors (2.1%) had high tumor mutational burden (TMB; both with MSH2 alterations); 16 (16.5%) had intermediate TMB. Seventy-one patients (73%) had ≥ 1 alteration that was theoretically druggable. Comparing HGNECC with SCLC, significant differences in TMB, microsatellite instability, HPV-positive status, and in PIK3CA, MYC, PTEN, TP53, ARID1A, and RB1 alteration rates were found. CONCLUSION This large cohort of patients with HGNECC demonstrated a genomic landscape distinct from SCLC, calling into question the biologic and therapeutic relevance of the histologic similarities between the entities. Furthermore, 73% of HGNECC tumors had potentially actionable alterations, suggesting novel treatment strategies for this aggressive malignancy.


Sign in / Sign up

Export Citation Format

Share Document