scholarly journals Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Hsiang-Hao Chuang ◽  
Yen-Yi Zhen ◽  
Yu-Chen Tsai ◽  
Cheng-Hao Chuang ◽  
Ming-Shyan Huang ◽  
...  

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.

2018 ◽  
Vol 52 (1) ◽  
pp. 89-107 ◽  
Author(s):  
Luis Aragón

Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.


2021 ◽  
Vol 9 (8) ◽  
pp. e002628
Author(s):  
Jitao Guo ◽  
Andrew Kent ◽  
Eduardo Davila

Adoptively transferred T cell-based cancer therapies have shown incredible promise in treatment of various cancers. So far therapeutic strategies using T cells have focused on manipulation of the antigen-recognition machinery itself, such as through selective expression of tumor-antigen specific T cell receptors or engineered antigen-recognition chimeric antigen receptors (CARs). While several CARs have been approved for treatment of hematopoietic malignancies, this kind of therapy has been less successful in the treatment of solid tumors, in part due to lack of suitable tumor-specific targets, the immunosuppressive tumor microenvironment, and the inability of adoptively transferred cells to maintain their therapeutic potentials. It is critical for therapeutic T cells to overcome immunosuppressive environmental triggers, mediating balanced antitumor immunity without causing unwanted inflammation or autoimmunity. To address these hurdles, chimeric receptors with distinct signaling properties are being engineered to function as allies of tumor antigen-specific receptors, modulating unique aspects of T cell function without directly binding to antigen themselves. In this review, we focus on the design and function of these chimeric non-antigen receptors, which fall into three broad categories: ‘inhibitory-to-stimulatory’ switch receptors that bind natural ligands, enhanced stimulatory receptors that interact with natural ligands, and synthetic receptor-ligand pairs. Our intent is to offer detailed descriptions that will help readers to understand the structure and function of these receptors, as well as inspire development of additional novel synthetic receptors to improve T cell-based cancer therapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Silu Chen ◽  
Shuai Ben ◽  
Junyi Xin ◽  
Shuwei Li ◽  
Rui Zheng ◽  
...  

AbstractSmall non-coding RNAs (ncRNAs) are vital regulators of biological activities, and aberrant levels of small ncRNAs are commonly found in precancerous lesions and cancer. PIWI-interacting RNAs (piRNAs) are a novel type of small ncRNA initially discovered in germ cells that have a specific length (24–31 nucleotides), bind to PIWI proteins, and show 2′-O-methyl modification at the 3′-end. Numerous studies have revealed that piRNAs can play important roles in tumorigenesis via multiple biological regulatory mechanisms, including silencing transcriptional and posttranscriptional gene processes and accelerating multiprotein interactions. piRNAs are emerging players in the malignant transformation of normal cells and participate in the regulation of cancer hallmarks. Most of the specific cancer hallmarks regulated by piRNAs are involved in sustaining proliferative signaling, resistance to cell death or apoptosis, and activation of invasion and metastasis. Additionally, piRNAs have been used as biomarkers for cancer diagnosis and prognosis and have great potential for clinical utility. However, research on the underlying mechanisms of piRNAs in cancer is limited. Here, we systematically reviewed recent advances in the biogenesis and biological functions of piRNAs and relevant bioinformatics databases with the aim of providing insights into cancer diagnosis and clinical applications. We also focused on some cancer hallmarks rarely reported to be related to piRNAs, which can promote in-depth research of piRNAs in molecular biology and facilitate their clinical translation into cancer treatment.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 242
Author(s):  
Ann Hoeben ◽  
Elbert A. J. Joosten ◽  
Marieke H. J. van den Beuken-van Everdingen

Personalized medicine (PM) or precision medicine in oncology is an emerging approach for tumor treatment and prevention that takes into account inter- and intra-tumor variability in genes, tumor (immune) environment, and lifestyle and morbidities of each person diagnosed with cancer [...]


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Annamaria Ruggiano ◽  
Kristijan Ramadan

AbstractProteins covalently attached to DNA, also known as DNA–protein crosslinks (DPCs), are common and bulky DNA lesions that interfere with DNA replication, repair, transcription and recombination. Research in the past several years indicates that cells possess dedicated enzymes, known as DPC proteases, which digest the protein component of a DPC. Interestingly, DPC proteases also play a role in proteolysis beside DPC repair, such as in degrading excess histones during DNA replication or controlling DNA replication checkpoints. Here, we discuss the importance of DPC proteases in DNA replication, genome stability and their direct link to human diseases and cancer therapy.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 349
Author(s):  
Sepideh Mirzaei ◽  
Ali Zarrabi ◽  
Farid Hashemi ◽  
Amirhossein Zabolian ◽  
Hossein Saleki ◽  
...  

Doxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients. Therefore, experiments have been directed towards revealing underlying mechanisms responsible for DOX resistance and ameliorating its adverse effects. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is activated to increase levels of reactive oxygen species (ROS) in cells to protect them against oxidative stress. It has been reported that Nrf2 activation is associated with drug resistance. In cells exposed to DOX, stimulation of Nrf2 signaling protects cells against cell death. Various upstream mediators regulate Nrf2 in DOX resistance. Strategies, both pharmacological and genetic interventions, have been applied for reversing DOX resistance. However, Nrf2 induction is of importance for alleviating side effects of DOX. Pharmacological agents with naturally occurring compounds as the most common have been used for inducing Nrf2 signaling in DOX amelioration. Furthermore, signaling networks in which Nrf2 is a key player for protection against DOX adverse effects have been revealed and are discussed in the current review.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1416
Author(s):  
Qiuping Liu ◽  
Xiaomeng Liu ◽  
Guanbin Song

The Hippo pathway is pervasively activated and has been well recognized to play critical roles in human cancer. The deregulation of Hippo signaling involved in cancer development, progression, and resistance to cancer treatment have been confirmed in several human cancers. Its biological significance and deregulation in cancer have drawn increasing interest in the past few years. A fundamental understanding of the complexity of the Hippo pathway in cancer is crucial for improving future clinical interventions and therapy for cancers. In this review, we try to clarify the complex regulation and function of the Hippo signaling network in cancer development, including its role in signal transduction, metabolic regulation, and tumor development, as well as tumor therapies targeting the Hippo pathway.


2011 ◽  
pp. 439-452 ◽  
Author(s):  
P. NOVÁK ◽  
T. SOUKUP

Calsequestrin is the main calcium binding protein of the sarcoplasmic reticulum, serving as an important regulator of Ca2+. In mammalian muscles, it exists as a skeletal isoform found in fast- and slow-twitch skeletal muscles and a cardiac isoform expressed in the heart and slow-twitch muscles. Recently, many excellent reviews that summarised in great detail various aspects of the calsequestrin structure, localisation or function both in skeletal and cardiac muscle have appeared. The present review focuses on skeletal muscle: information on cardiac tissue is given, where differences between both tissues are functionally important. The article reviews the known multiple roles of calsequestrin including pathology in order to introduce this topic to the broader scientific community and to stimulate an interest in this protein. Newly we describe our results on the effect of thyroid hormones on skeletal and cardiac calsequestrin expression and discuss them in the context of available literary data on this topic.


2021 ◽  
Author(s):  
Sean Thomas ◽  
Kathryn Wierenga ◽  
James Pestka ◽  
Andrew Olive

Alveolar macrophages (AMs) are tissue resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. While the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function. Here, we describe the development of a new model, fetal liver-derived alveolar-like macrophages (FLAMs), which maintains cellular morphologies, expression profiles, and functional mechanisms similar to murine AMs. FLAMs combine treatment with two key cytokines for AM maintenance, GM-CSF and TGFβ. We leveraged the long-term stability of FLAMs to develop functional genetic tools using CRISPR-Cas9-mediated gene editing. Targeted editing confirmed the role of AM-specific gene Marco and the IL-1 receptor Il1r1 in modulating the AM response to crystalline silica. Furthermore, a genome-wide knockout library using FLAMs identified novel genes required for surface expression of the AM marker Siglec-F, most notably those related to the peroxisome. Taken together, our results suggest that FLAMs are a stable, self-replicating model of AM function that enables previously impossible global genetic approaches to define the underlying mechanisms of AM maintenance and function.


Sign in / Sign up

Export Citation Format

Share Document