scholarly journals Alteration in the Cerebrospinal Fluid Lipidome in Parkinson’s Disease: A Post-Mortem Pilot Study

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 491
Author(s):  
Joaquín Fernández-Irigoyen ◽  
Paz Cartas-Cejudo ◽  
Marta Iruarrizaga-Lejarreta ◽  
Enrique Santamaría

Lipid metabolism is clearly associated to Parkinson’s disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models, as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we characterized the post-mortem CSF lipidomic imbalance between neurologically intact controls (n = 10) and PD subjects (n = 20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed for the monitoring of 257 lipid species across all samples. Complementary multivariate and univariate data analysis identified that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to the control group. Interestingly, CSF lipid dyshomeostasis differed depending on neuropathological staging and disease duration. These results, despite the limitation of being obtained in a small population, suggest extensive CSF lipid remodeling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.

Author(s):  
Joaquín Fernández-Irigoyen ◽  
Paz Cartas-Cejudo ◽  
Enrique Santamaría

Lipid metabolism is clearly associated to Parkinson´s disease (PD). Although lipid homeostasis has been widely studied in multiple animal and cellular models as well as in blood derived from PD individuals, the cerebrospinal fluid (CSF) lipidomic profile in PD remains largely unexplored. In this study, we have characterized the CSF lipidomic imbalance between neurologically intact controls (n=10) and PD subjects (n=20). The combination of dual extraction with ultra-performance liquid chromatography-electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-qToF-MS/MS) allowed to monitor 257 lipid species across all samples. Complementary multivariate and univariate data analysis pointed out that glycerolipids (mono-, di-, and triacylglycerides), saturated and mono/polyunsaturated fatty acids, primary fatty amides, glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines), sphingolipids (ceramides, sphingomyelins), N-acylethanolamines and sterol lipids (cholesteryl esters, steroids) were significantly increased in the CSF of PD compared to control group. These results, despite the limitation of being obtained in a small population, demonstrate and extensive CSF lipid remodelling in PD, shedding new light on the deployment of CSF lipidomics as a promising tool to identify potential lipid markers as well as discriminatory lipid species between PD and other atypical parkinsonisms.


2021 ◽  
Author(s):  
Michaela Kaiserova ◽  
Monika Chudackova ◽  
Hana Prikrylova Vranova ◽  
Katerina Mensikova ◽  
Anetta Kastelikova ◽  
...  

Background: Various cerebrospinal fluid (CSF) biomarkers are studied in Parkinson’s disease (PD) and atypical parkinsonian syndromes (APS). Several studies found reduced 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in PD. There is little evidence regarding its levels in APS. Methods: We measured 5-HIAA in the CSF of 90 PD patients, 16 MSA patients, 26 progressive supranuclear palsy (PSP) patients, 11 corticobasal degeneration (CBD) patients, and 31 controls. We also compared the values in depressed and non-depressed patients. Results: There was a statistically significant difference in CSF 5-HIAA in PD and MSA compared to the control group (median in PD 15.8 µg/l, in MSA 13.6 µg/l vs. 24.3 µg/l in controls; P=0.0008 in PD, P=0.006 in MSA). There was no statistically significant difference in CSF 5-HIAA in PSP and CBD compared to the control group (median in PSP 22.7 µg/l, in CBD 18.7 µg/l vs. 24.3 µg/l in controls; P= 1 in both PSP and CBD). CSF 5-HIAA levels were lower in PD patients with depression compared to PD patients without depression (median 8.34 vs. 18.48, P<0.0001). Conclusions: CSF 5-HIAA is decreased in PD and MSA. The CSF 5-HIAA levels in PSP and CBS did not differ from those of the control group. There was a tendency toward lower CSF 5-HIAA in MSA than in PD, however, the results did not reach statistical significance. These results may be explained by more severe damage of the serotonergic system in synucleinopathies (PD, MSA) than in tauopathies (PSP, CBS).


Brain ◽  
2019 ◽  
Vol 142 (7) ◽  
pp. 2023-2036 ◽  
Author(s):  
Antonio Martín-Bastida ◽  
Nicholas P Lao-Kaim ◽  
Andreas Antonios Roussakis ◽  
Graham E Searle ◽  
Yue Xing ◽  
...  

Abstract Parkinson’s disease is characterized by the progressive loss of pigmented dopaminergic neurons in the substantia nigra and associated striatal deafferentation. Neuromelanin content is thought to reflect the loss of pigmented neurons, but available data characterizing its relationship with striatal dopaminergic integrity are not comprehensive or consistent, and predominantly involve heterogeneous samples. In this cross-sectional study, we used neuromelanin-sensitive MRI and the highly specific dopamine transporter PET radioligand, 11C-PE2I, to assess the association between neuromelanin-containing cell levels in the substantia nigra pars compacta and nigrostriatal terminal density in vivo, in 30 patients with bilateral Parkinson’s disease. Fifteen healthy control subjects also underwent neuromelanin-sensitive imaging. We used a novel approach taking into account the anatomical and functional subdivision of substantia nigra into dorsal and ventral tiers and striatal nuclei into pre- and post-commissural subregions, in accordance with previous animal and post-mortem studies, and consider the clinically asymmetric disease presentation. In vivo, Parkinson’s disease subjects displayed reduced neuromelanin levels in the ventral (−30 ± 28%) and dorsal tiers (−21 ± 24%) as compared to the control group [F(1,43) = 11.95, P = 0.001]. Within the Parkinson’s disease group, nigral pigmentation was lower in the ventral tier as compared to the dorsal tier [F(1,29) = 36.19, P < 0.001] and lower in the clinically-defined most affected side [F(1,29) = 4.85, P = 0.036]. Similarly, lower dopamine transporter density was observed in the ventral tier [F(1,29) = 76.39, P < 0.001] and clinically-defined most affected side [F(1,29) = 4.21, P = 0.049]. Despite similar patterns, regression analysis showed no significant association between nigral pigmentation and nigral dopamine transporter density. However, for the clinically-defined most affected side, significant relationships were observed between pigmentation of the ventral nigral tier with striatal dopamine transporter binding in pre-commissural and post-commissural striatal subregions known to receive nigrostriatal projections from this tier, while the dorsal tier correlated with striatal projection sites in the pre-commissural striatum (P < 0.05, Benjamini-Hochberg corrected). In contrast, there were no statistically significant relationships between these two measures in the clinically-defined least affected side. These findings provide important insights into the topography of nigrostriatal neurodegeneration in Parkinson’s disease, indicating that the characteristics of disease progression may fundamentally differ across hemispheres and support post-mortem data showing asynchrony in the loss of neuromelanin-containing versus tyrosine hydroxylase positive nigral cells.


2021 ◽  
Vol 11 (2) ◽  
pp. 141
Author(s):  
Michaela Kaiserova ◽  
Monika Chudackova ◽  
Katerina Mensikova ◽  
Miroslav Vastik ◽  
Sandra Kurcova ◽  
...  

Background: Chromogranin A (CgA) and other peptides from the chromogranin–secretogranin family have been recently studied as potential biomarkers of various neurodegenerative diseases, including Parkinson’s disease (PD). Methods: We measured CgA in the cerebrospinal fluid (CSF) of 119 PD patients, 18 multiple system atrophy (MSA) patients, and 31 age-matched controls. We also correlated the values with disease duration and levodopa dose equivalent. Results: In the PD patients, CSF CgA tended to be lower than the control group (median 124.5 vs. 185.2 µg/L; p = 0.057); however, the results did not reach statistical significance. CSF CgA levels in MSA were significantly lower compared to the control group (median 104.4 vs. 185.2; p = 0.014). There was no significant difference in CSF CgA between PD and MSA patients (p = 0.372). There was no association between CSF CgA and disease duration or levodopa dose equivalent in PD or in MSA. Conclusions: We observed a tendency toward lower CSF CgA levels in both PD and MSA compared to the control group; however, the difference reached statistical significance only in MSA. Based on these results, CgA may have potential as a biomarker in PD and MSA, but further studies on larger numbers of patients are needed to draw conclusions.


Author(s):  
Hamdy N. El-Tallawy ◽  
Tahia H. Saleem ◽  
Wafaa M. Farghaly ◽  
Heba Mohamed Saad Eldien ◽  
Ashraf Khodaery ◽  
...  

Abstract Background Parkinson’s disease is one of the neurodegenerative disorders that is caused by genetic and environmental factors or interaction between them. Solute carrier family 41 member 1 within the PARK16 locus has been reported to be associated with Parkinson’s disease. Cognitive impairment is one of the non-motor symptoms that is considered a challenge in Parkinson’s disease patients. This study aimed to investigate the association of rs11240569 polymorphism; a synonymous coding variant in SLC41A1 in Parkinson’s disease patients in addition to the assessment of cognitive impairment in those patients. Results In a case -control study, rs11240569 single nucleotide polymorphisms in SLC41A1, genes were genotyped in 48 Parkinson’s disease patients and 48 controls. Motor and non-motor performance in Parkinson's disease patients were assessed by using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). The genotype and allele frequencies were compared between the two groups and revealed no significant differences between case and control groups for rs11240569 in SLC41A1 gene with P value .523 and .54, respectively. Cognition was evaluated and showed the mean ± standard deviation (SD) of WAIS score of PD patients 80.4 ± 9.13 and the range was from 61 to 105, in addition to MMSE that showed mean ± SD 21.96 ± 3.8. Conclusion Genetic testing of the present study showed that rs11240569 polymorphism of SLC41A1 gene has no significant differences in distributions of alleles and genotypes between cases and control group, in addition to cognitive impairment that is present in a large proportion of PD patients and in addition to the strong correlation between cognitive impairment and motor and non-motor symptoms progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyoungwon Baik ◽  
Seon Myeong Kim ◽  
Jin Ho Jung ◽  
Yang Hyun Lee ◽  
Seok Jong Chung ◽  
...  

AbstractWe investigated the efficacy of donepezil for mild cognitive impairment in Parkinson’s disease (PD-MCI). This was a prospective, non-randomized, open-label, two-arm study. Eighty PD-MCI patients were assigned to either a treatment or control group. The treatment group received donepezil for 48 weeks. The primary outcome measures were the Korean version of Mini-Mental State Exam and Montreal Cognitive Assessment scores. Secondary outcome measures were the Clinical Dementia Rating, Unified Parkinson’s Disease Rating Scale part III, Clinical Global Impression scores. Progression of dementia was assessed at 48-week. Comprehensive neuropsychological tests and electroencephalography (EEG) were performed at baseline and after 48 weeks. The spectral power ratio of the theta to beta2 band (TB2R) in the electroencephalogram was analyzed. There was no significant difference in the primary and secondary outcome measures between the two groups. However, the treatment group showed a significant decrease in TB2R at bilateral frontotemporoparietal channels compared to the control group. Although we could not demonstrate improvements in the cognitive functions, donepezil treatment had a modulatory effect on the EEG in PD-MCI patients. EEG might be a sensitive biomarker for detecting changes in PD-MCI after donepezil treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pusheng Quan ◽  
Kai Wang ◽  
Shi Yan ◽  
Shirong Wen ◽  
Chengqun Wei ◽  
...  

AbstractThis study aimed to identify potential novel drug candidates and targets for Parkinson’s disease. First, 970 genes that have been reported to be related to PD were collected from five databases, and functional enrichment analysis of these genes was conducted to investigate their potential mechanisms. Then, we collected drugs and related targets from DrugBank, narrowed the list by proximity scores and Inverted Gene Set Enrichment analysis of drug targets, and identified potential drug candidates for PD treatment. Finally, we compared the expression distribution of the candidate drug-target genes between the PD group and the control group in the public dataset with the largest sample size (GSE99039) in Gene Expression Omnibus. Ten drugs with an FDR < 0.1 and their corresponding targets were identified. Some target genes of the ten drugs significantly overlapped with PD-related genes or already known therapeutic targets for PD. Nine differentially expressed drug-target genes with p < 0.05 were screened. This work will facilitate further research into the possible efficacy of new drugs for PD and will provide valuable clues for drug design.


Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 314
Author(s):  
Aida Arroyo-Ferrer ◽  
Francisco José Sánchez-Cuesta ◽  
Yeray González-Zamorano ◽  
María Dolores del Castillo ◽  
Carolina Sastre-Barrios ◽  
...  

Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder. This disease is characterized by motor symptoms, such as bradykinesia, tremor, and rigidity. Although balance impairment is characteristic of advanced stages, it can be present with less intensity since the beginning of the disease. Approximately 60% of PD patients fall once a year and 40% recurrently. On the other hand, cognitive symptoms affect up to 20% of patients with PD in early stages and can even precede the onset of motor symptoms. There are cognitive requirements for balance and can be challenged when attention is diverted or reduced, linking a worse balance and a higher probability of falls with a slower cognitive processing speed and attentional problems. Cognitive rehabilitation of attention and processing speed can lead to an improvement in postural stability in patients with Parkinson’s. Methods: We present a parallel and controlled randomized clinical trial (RCT) to assess the impact on balance of a protocol based on cognitive rehabilitation focused on sustained attention through the NeuronUP platform (Neuronup SI, La Rioja, Spain) in patients with PD. For 4 weeks, patients in the experimental group will receive cognitive therapy three days a week while the control group will not receive any therapy. The protocol has been registered at trials.gov NCT04730466. Conclusions: Cognitive therapy efficacy on balance improvement may open the possibility of new rehabilitation strategies for prevention of falls in PD, reducing morbidity, and saving costs to the health care system.


Sign in / Sign up

Export Citation Format

Share Document