scholarly journals Biomechanical Modeling of Human Skin Tissue Surrogates

Biomimetics ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 18 ◽  
Author(s):  
Arnab Chanda

Surrogates, which precisely simulate nonlinear mechanical properties of the human skin at different body sites, would be indispensable for biomechanical testing applications, such as estimating the accurate load response of skin implants and prosthetics to study the biomechanics of static and dynamic loading conditions on the skin, dermatological and sports injuries, and estimating the dynamic load response of lethal and nonlethal ballistics. To date, human skin surrogates have been developed mainly with materials, such as gelatin and polydimethylsiloxane (PDMS), based on assumption of simplified mechanical properties, such as an average elastic modulus (estimated through indentation tests), and Poisson’s ratio. In addition, pigskin and cowhides, which have widely varying mechanical properties, have been used to simulate human skin. In the current work, a novel elastomer-based material system is developed, which precisely mimics the nonlinear stress–stretch behavior, elastic modulus at high and low strains, and fracture strengths of the natural human skin at different body sites. The manufacturing and fabrication process of these skin surrogates are discussed, and mechanical testing results are presented.

2014 ◽  
Vol 85 (5) ◽  
pp. 777-783 ◽  
Author(s):  
Dayanne Lopes da Silva ◽  
Emanuel Santos ◽  
Sérgio de Souza Camargo ◽  
Antônio Carlos de Oliveira Ruellas

ABSTRACT Objective:  To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. Materials and Methods:  The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. Results:  The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm−1. The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. Conclusion:  The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.


2018 ◽  
Vol 784 ◽  
pp. 27-32 ◽  
Author(s):  
Vilma Buršíková ◽  
Vojtěch Homola ◽  
Yvonna Jirásková ◽  
Naděžda Pizúrová ◽  
Ivana Miháliková ◽  
...  

The local mechanical properties of Fe78Al22alloy were studied using nanoindentation techniques. Sharp Berkovich indenter was used to perform load-controlled nanoindentation experiments on the studied sample. Hardness and elastic modulus maps were created on the basis of the indentation tests carried out in different grains. The focus of the work was to study the dependence of mechanical properties on the grain orientation. The results were in good agreement with quantum-mechanical calculations of anisotropic elastic properties of the studied alloy. It was explained that the maximum detected elastic modulus values are likely for grains with [111] crystallographic orientations which we theoretically identified as the hard ones.


1996 ◽  
Vol 11 (9) ◽  
pp. 2358-2367 ◽  
Author(s):  
Weiping Yu ◽  
James P. Blanchard

An analytical model of hardness has been developed. Four major indentation tests, namely indentation by cones, wedges, spheres, and flat-ended, axisymmetric cylinders have been analyzed based on the model. Analytical relationships among hardness, yield stress, elastic modulus, Poisson's ratio, and indenter geometries have been found. These results enable hardness to be calculated in terms of uniaxial material properties and indenter geometries for a wide variety of elastic and plastic materials. These relationships can also be used for evaluating other mechanical properties through hardness measurements and for converting hardness from one type of hardness test into those of a different test. Comparison with experimental data and numerical calculations is excellent.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 823
Author(s):  
Danko Ćorić ◽  
Mateja Šnajdar Musa ◽  
Matija Sakoman ◽  
Željko Alar

The development of cemented carbides nowadays is aimed at the application and sintering of ultrafine and nano-sized powders for the production of a variety of components where excellent mechanical properties and high wear resistance are required for use in high temperature and corrosive environment conditions. The most efficient way of increasing the tribological properties along with achieving high corrosion resistance is coating. Using surface processes (modification and/or coating), it is possible to form a surface layer/base material system with properties that can meet modern expectations with acceptable production costs. Three coating systems were developed on WC cemented carbides substrate with the addition of 10 wt.% Co using the plasma-assisted chemical vapor deposition (PACVD) method: single-layer TiN coating, harder multilayer gradient TiCN coating composed of TiN and TiCN layers, and the hardest multilayer TiBN coating composed of TiN and TiB2. Physical and mechanical properties of coated and uncoated samples were investigated by means of quantitative depth profile (QDP) analysis, nanoindentation, surface layer characterization (XRD analysis), and coating adhesion evaluation using the scratch test. The results confirm the possibility of obtaining nanostructured cemented carbides of homogeneous structure without structural defects such as eta phase or unbound carbon providing increase in hardness and fracture toughness. The lowest adhesion was detected for the single-layer TiN coating, while coatings with a complex architecture (TiCN, TiBN) showed improved adhesion.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Bo Zhang ◽  
Sizhi Zeng ◽  
Fenghua Tang ◽  
Shujun Hu ◽  
Qiang Zhou ◽  
...  

As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective elastic modulus and slope of the transformation stresses in the process of loading and unloading are also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation stresses in the process of loading is increased, while the effective elastic modulus and slope of the transformation stresses in the process of unloading are decreased, and the maximum energy dissipation capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test and numerical results is obtained by comparing with the hysteresis curves and energy dissipation values, so the numerical model is useful to predict the stress–strain relations at different stages. The test and numerical results will also provide a basis for the design of corresponding self-centering steel dampers.


2011 ◽  
Vol 236-238 ◽  
pp. 1746-1751 ◽  
Author(s):  
Kun Liang ◽  
Guan Ben Du ◽  
Omid Hosseinaei ◽  
Si Qun Wang ◽  
Hui Wang

To find out the penetration of PF into the wood cell wall and its effects onthe mechanical properties in the cellular level, the elastic modulus and hardness of secondary wall (S2layer) and compound corner middle lamella (CCML) near PF bond line region were determined by nanoindentation. Compare to the reference cell walls (unaffected by PF), PF penetration into the wood tissues showed improved elastic modulus and hardness. And the mechanical properties decreased slowly with the increasing the distance from the bond line, which are attributed to the effects of PF penetration into S2layer and CCML. The reduced elastic modulus variations were from18.8 to 14.4 GPa for S2layer, and from10.1 to 7.65 GPa for CCML. The hardness was from 0.67 to 0.52 GPa for S2layer, and from 0.65 to 0.52 GPa for CCML. In each test viewpoint place, the average hardness of CCML was almost as high as that of S2layer, but the reduced elastic modulus was about 50% less than that of S2layer. But the increase ratio of mechanical properties was close. All the results showed PF penetrates into the CCML. The penetration behavior and penetration depth from bond line were similar in both S2layer and CCML.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


Sign in / Sign up

Export Citation Format

Share Document