scholarly journals Detection of the Complete ECG Waveform with Woven Textile Electrodes

Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 331
Author(s):  
Katya Arquilla ◽  
Laura Devendorf ◽  
Andrea K. Webb ◽  
Allison P. Anderson

Wearable physiological monitoring systems are becoming increasingly prevalent in the push toward autonomous health monitoring and offer new modalities for playful and purposeful interaction within human computer interaction (HCI). Sensing systems that can be integrated into garments and, therefore, daily activities offer promising pathways toward ubiquitous integration. The electrocardiogram (ECG) signal is commonly monitored in healthcare and is increasingly utilized as a method of determining emotional and psychological state; however, the complete ECG waveform with the P, Q, R, S, and T peaks is not commonly used, due to the challenges associated with collecting the full waveform with wearable systems. We present woven textile electrodes as an option for garment-integrated ECG monitoring systems that are capable of capturing the complete ECG waveform. In this work, we present the changes in the peak detection performance caused by different sizes, patterns, and thread types with data from 10 human participants. These testing results provide empirically-derived guidelines for future woven textile electrodes, present a path forward for assessing design decisions, and highlight the importance of testing novel wearable sensor systems with more than a single individual.

2021 ◽  
Vol 11 (3) ◽  
pp. 1235
Author(s):  
Su Min Yun ◽  
Moohyun Kim ◽  
Yong Won Kwon ◽  
Hyobeom Kim ◽  
Mi Jung Kim ◽  
...  

The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on establishing fully-wearable systems. To attain such excellent wearability while providing accurate and reliable measurements, fabrication strategies should include (1) proper choices of materials and structural designs, (2) constructing efficient wireless power and data transmission systems, and (3) developing highly-integrated sensing systems. Herein, we discuss recent advances in wearable devices for non-invasive sensing, with focuses on materials design, nano/microfabrication, sensors, wireless technologies, and the integration of those.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ming Li ◽  
Wei Xiong ◽  
Yongjian Li

Smart clothing that can measure electrocardiogram (ECG) signals and monitor the health status of people meets the needs of our increasingly aging society. However, the conventional measurement of ECG signals is complicated and its electrodes can cause irritation to the skin, which makes the conventional measurement method unsuitable for applications in smart clothing. In this paper, a novel wearable measurement of ECG signals is proposed. There are only three ECG textile electrodes knitted into the fabric of smart clothing. The acquired ECG signals can be transmitted to a smartphone via Bluetooth, and they can also be sent out to a PC terminal by a smartphone via WiFi or Internet. To get more significant ECG signals, the ECG differential signal between two electrodes is calculated based on a spherical volume conductor model, and the best positions on the surface of a human body for two textile electrodes to measure ECG signals are simulated by using the body-surface potential mapping (BSPM) data. The results show that position 12 in the lower right and position 11 in the upper left of the human body are the best for the two electrodes to measure ECG signals, and the presented wearable measurement can obtain good performance when one person is under the conditions of sleeping and jogging.


2021 ◽  
Vol 6 (1) ◽  
pp. 84
Author(s):  
Erik Vanegas ◽  
Raúl Igual ◽  
Inmaculada Plaza

Sensors for respiratory monitoring can be classified into wearable and non-wearable systems. Wearable sensors can be worn in several positions, the chest being one of the most effective. In this paper, we have studied the performance of a new piezoresistive breathing sensing system to be worn on the chest with a belt. One of the main problems of belt-attached sensing systems is that they present trends in measurements due to subject movements or differences in subject constitution. These trends affect sensor performance. To mitigate them, it is possible to post-process the data to remove trends in measurements, but relevant data from the respiration signal may be lost. In this study, two different detrending methods are applied to respiration signals. After conducting an experimental study with 21 subjects who breathed in different positions with a chest piezoresistive sensor attached to a belt, detrending method 2 proved to be better at improving the quality of respiration signals.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1091
Author(s):  
Alina-Cristina Bunea ◽  
Violeta Dediu ◽  
Edwin Alexandru Laszlo ◽  
Florian Pistriţu ◽  
Mihaela Carp ◽  
...  

Real-time “on-body” monitoring of human physiological signals through wearable systems developed on flexible substrates (e-skin) is the next target in human health control and prevention, while an alternative to bulky diagnostic devices routinely used in clinics. The present work summarizes the recent trends in the development of e-skin systems. Firstly, we revised the material development for e-skin systems. Secondly, aspects related to fabrication techniques were presented. Next, the main applications of e-skin systems in monitoring, such as temperature, pulse, and other bio-electric signals related to health status, were analyzed. Finally, aspects regarding the power supply and signal processing were discussed. The special features of e-skin as identified contribute clearly to the developing potential as in situ diagnostic tool for further implementation in clinical practice at patient personal levels.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1655
Author(s):  
Pawel Zalewski ◽  
Letizia Marchegiani ◽  
Atis Elsts ◽  
Robert Piechocki ◽  
Ian Craddock ◽  
...  

Wearable systems constitute a promising solution to the emerging challenges of healthcare provision, feeding machine learning frameworks with necessary data. In practice, however, raw data collection is expensive in terms of energy, and therefore imposes a significant maintenance burden to the user, which in turn results in poor user experience, as well as significant data loss due to improper battery maintenance. In this paper, we propose a framework for on-board activity classification targeting severely energy-constrained wearable systems. The proposed framework leverages embedded classifiers to activate power-hungry sensing elements only when they are useful, and to distil the raw data into knowledge that is eventually transmitted over the air. We implement the proposed framework on a prototype wearable system and demonstrate that it can decrease the energy requirements by one order of magnitude, yielding high classification accuracy that is reduced by approximately 5%, as compared to a cloud-based reference system.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1013 ◽  
Author(s):  
Katya Arquilla ◽  
Andrea Webb ◽  
Allison Anderson

Wearable health-monitoring systems should be comfortable, non-stigmatizing, and able to achieve high data quality. Smart textiles with electronic elements integrated directly into fabrics offer a way to embed sensors into clothing seamlessly to serve these purposes. In this work, we demonstrate the feasibility of electrocardiogram (ECG) monitoring with sewn textile electrodes instead of traditional gel electrodes in a 3-lead, chest-mounted configuration. The textile electrodes are sewn with silver-coated thread in an overlapping zig zag pattern into an inextensible fabric. Sensor validation included ECG monitoring and comfort surveys with human subjects, stretch testing, and wash cycling. The electrodes were tested with the BIOPAC MP160 ECG data acquisition module. Sensors were placed on 8 subjects (5 males and 3 females) with double-sided tape. To detect differences in R peak detectability between traditional and sewn sensors, effect size was set at 10% of a sample mean for heart rate (HR) and R-R interval. Paired student’s t-tests were run between adhesive and sewn electrode data for R-R interval and average HR, and a Wilcoxon signed-rank test was run for comfort. No statistically significant difference was found between the traditional and textile electrodes (R-R interval: t = 1.43, p > 0.1; HR: t = −0.70, p > 0.5; comfort: V = 15, p > 0.5).


2020 ◽  
Vol 10 (14) ◽  
pp. 5018
Author(s):  
Sung-Min Kim ◽  
Yosoon Choi ◽  
Jangwon Suh

In this study, applications of the Arduino platform in the mining industry were reviewed. Arduino, a representative and popular open-source hardware, can acquire information from various sensors, transmit data using communication technology, and control devices through actuators. The review was conducted by classifying previous studies into three types of Arduino applications: field monitoring systems, wearable systems, and autonomous systems. With regard to field monitoring systems, most studies in mines were classified as atmospheric or geotechnical monitoring. In wearable systems, the health status of the miner was an important consideration, in addition to the environmental conditions of the mine. Arduino can be a useful tool as an initial prototype for autonomous mine systems. Arduino has advantages in that it can be combined with various electronic products and is cost-effective. Therefore, although many studies have been conducted in the laboratory (as opposed to field tests), Arduino applications can be further expanded in the mining field in the future.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4426 ◽  
Author(s):  
Fernando Seoane ◽  
Azadeh Soroudi ◽  
Ke Lu ◽  
David Nilsson ◽  
Marie Nilsson ◽  
...  

The interconnection between hard electronics and soft textiles remains a noteworthy challenge in regard to the mass production of textile–electronic integrated products such as sensorized garments. The current solutions for this challenge usually have problems with size, flexibility, cost, or complexity of assembly. In this paper, we present a solution with a stretchable and conductive carbon nanotube (CNT)-based paste for screen printing on a textile substrate to produce interconnectors between electronic instrumentation and a sensorized garment. The prototype connectors were evaluated via electrocardiogram (ECG) recordings using a sensorized textile with integrated textile electrodes. The ECG recordings obtained using the connectors were evaluated for signal quality and heart rate detection performance in comparison to ECG recordings obtained with standard pre-gelled Ag/AgCl electrodes and direct cable connection to the ECG amplifier. The results suggest that the ECG recordings obtained with the CNT paste connector are of equivalent quality to those recorded using a silver paste connector or a direct cable and are suitable for the purpose of heart rate detection.


Author(s):  
Butta Singh ◽  
Manjit Singh ◽  
Dixit Sharma

Remote health-care monitoring systems communicate biomedical information (e.g. Electrocardiogram (ECG)) over insecure networks. Protection of the integrity, authentication and confidentiality of the medical data is a challenging issue. This chapter proposed an encryption process having a 4-round five steps -encryption structure includes: the random pixel insertion, row separation, substitution of each separated row, row combination and rotation. Accuracy and security analysis of proposed method for 2D ECG encryption is evaluated on MIT-BIH arrhythmia database.


Sign in / Sign up

Export Citation Format

Share Document