Dual inhibition of αV integrins and Src kinase activity in colon cancer cells

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14609-e14609
Author(s):  
A. Starodub ◽  
J. Jia ◽  
S. Cushman ◽  
D. Marshall ◽  
H. I. Hurwitz ◽  
...  

e14609 Background: Integrins are commonly upregulated in tumor cells and are important regulators of invasion and metastasis. Integrin signaling is initiated upon engagement of ECM and requires Src as well as various other proteins including ILK, FAK, and paxillin. Methods: Presence of αv integrins on CRC cell lines was established by flow cytometry. CNTO 95 (10μg/ml, a monoclonal anti-αv integrin antibody; Ortho Biotech), and dasatinib (<200nM; BMS, src small molecule inhibitor) were used to study the effects of combined integrin and src inhibition on proliferation and serum-induced migration of colon cancer cell lines in vitro. Downstream signaling changes were assessed by immunoblotting for phosphorylated forms of src, FAK (Y397, Y576/577 and Y925), paxillin, GSK3β and AKT (S473) in HT29, HCT116 and RKO. Results: Proliferation was inhibited by dasatinib in HT29, HCT116, DLD1 and HCT15 in a dose-dependent manner, while RKO and SW48 were resistant. Combining CNTO 95 with dasatinib further inhibited proliferation in all dasatinib-sensitive cells, yet resistant cells were unaffected. Migration was blocked by both CNTO 95 and dasatinib in all cell lines, and combining the two drugs produced augmented effect. Src activation and src- dependent FAK phosphorylation at sites 576 and 925 were blocked by dasatinib; CNTO 95 had little effect alone, but potentiated the effect of dasatinib. Paxillin phosphorylation was modestly blocked by both compounds, but the combination produced significantly augmented inhibition in the three cell lines tested. The phosphorylation status of AKT and GSK-3β, which are downstream of ILK, was inhibited by both drugs as single agents. The combination of dasatinib and CNTO 95 produced further inhibition. Conclusions: Dual inhibition of Src by dasatinib and αv integrins by CNTO 95 produced additive to synergistic inhibition of proliferation in dasatinib sensitive CRC cell lines, and inhibition of migration in all cell lines tested. Decreased phospho-paxillin levels may be responsible for the pronounced inhibition of migration observed after dual treatment with dasatinib and CNTO 95 in these CRC cell lines. These data support the rationale for combined Src/integrin inhibition in colon cancer, and further suggest approaches to patient selection strategies. [Table: see text]

2019 ◽  
Vol 10 (1) ◽  
pp. 20 ◽  
Author(s):  
Costansia Bureta ◽  
Takao Setoguchi ◽  
Yoshinobu Saitoh ◽  
Hiroyuki Tominaga ◽  
Shingo Maeda ◽  
...  

The activation and proliferation of microglia is characteristic of the early stages of brain pathologies. In this study, we aimed to identify a factor that promotes microglial activation and proliferation and examined the in vitro effects on these processes. We cultured microglial cell lines, EOC 2 and SIM-A9, with various growth factors and evaluated cell proliferation, death, and viability. The results showed that only transforming growth factor beta (TGF-β) caused an increase in the in vitro proliferation of both microglial cell lines. It has been reported that colony-stimulating factor 1 promotes the proliferation of microglia, while TGF-β promotes both proliferation and inhibition of cell death of microglia. However, upon comparing the most effective doses of both (assessed from the proliferation assay), we identified no statistically significant difference between the two factors in terms of cell death; thus, both have a proliferative effect on microglial cells. In addition, a TGF-β receptor 1 inhibitor, galunisertib, caused marked inhibition of proliferation in a dose-dependent manner, indicating that inhibition of TGF-β signalling reduces the proliferation of microglia. Therefore, galunisertib may represent a promising therapeutic agent for the treatment of neurodegenerative diseases via inhibition of nerve injury-induced microglial proliferation, which may result in reduced inflammatory and neuropathic and cancer pain.


2014 ◽  
Vol 121 (6) ◽  
pp. 1483-1491 ◽  
Author(s):  
Ho-Shin Gwak ◽  
Myung-Jin Park ◽  
In-Chul Park ◽  
Sang Hyeok Woo ◽  
Hyeon-Ok Jin ◽  
...  

Object Local invasiveness of malignant glioma is a major reason for the failure of current treatments including surgery and radiation therapy. Tetraarsenic oxide (As4O6 [TAO]) is a trivalent arsenic compound that has potential anticancer and antiangiogenic effects in selected cancer cell lines at a lower concentration than arsenic trioxide (As2O3 [ATO]), which has been more widely tested in vitro and in vivo. The authors tried to determine the cytotoxic concentration of TAO in malignant glioma cell lines and whether TAO would show anti-invasive effects under conditions independent of cell death or apoptosis. Methods The human phosphatase and tensin homolog (PTEN)-deficient malignant glioma cell lines U87MG, U251MG, and U373MG together with PTEN-functional LN428 were cultured with a range of micromolar concentrations of TAO. The invasiveness of the glioma cell lines was analyzed. The effect of TAO on matrix metalloproteinase (MMP) secretion and membrane type 1 (MT1)-MMP expression was measured using gelatin zymography and Western blot, respectively. Akt, or protein kinase B, activity, which is a downstream effector of PTEN, was assessed with a kinase assay using glycogen synthesis kinase-3β (GSK-3β) as a substrate and Western blotting of phosphorylated Akt. Results Tetraarsenic oxide inhibited 50% of glioma cell proliferation at 6.3–12.2 μM. Subsequent experiments were performed under the same TAO concentrations and exposure times, avoiding the direct tumoricidal effect of TAO, which was confirmed with apoptosis markers. An invasion assay revealed a dose-dependent decrease in invasiveness under the influence of TAO. Both the gelatinolytic activity of MMP-2 and MT1-MMP expression decreased in a dose-dependent manner in all cell lines, which was in accordance with the invasion assay results. The TAO decreased kinase activity of Akt on GSK-3β assay and inhibited Akt phosphorylation in a dose-dependent manner in all cell lines regardless of their PTEN status. Conclusions These results showed that TAO effectively inhibits proliferation of glioblastoma cell lines and also exerts an anti-invasive effect via decreased MMP-2 secretion, decreased MT1-MMP expression, and the inhibition of Akt phosphorylation under conditions devoid of cytotoxicity. Further investigations using an in vivo model are needed to evaluate the potential role of TAO as an anti-invasive agent.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yeongji Yu ◽  
Hyejin Kim ◽  
SeokGyeong Choi ◽  
JinSuh Yu ◽  
Joo Yeon Lee ◽  
...  

The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.


2005 ◽  
Vol 15 (17) ◽  
pp. 3930-3933 ◽  
Author(s):  
Rosaria Ottanà ◽  
Stefania Carotti ◽  
Rosanna Maccari ◽  
Ida Landini ◽  
Giuseppa Chiricosta ◽  
...  

2015 ◽  
Vol 35 (3) ◽  
pp. 1680-1688 ◽  
Author(s):  
XIAO-HANG CHE ◽  
CHUN-LIN CHEN ◽  
XIAO-LEI YE ◽  
GUO-BIN WENG ◽  
XIAN-ZHI GUO ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Khawla S Al-Kuraya ◽  
Abdul K Siraj ◽  
Pratheeshkumar Poyil ◽  
Divya Padmaja ◽  
Sandeep Kumar Parvathareddy ◽  
...  

Abstract Thyroid cancer is the second most common malignancy among females in Saudi Arabia, with Papillary thyroid carcinoma (PTC) accounting for 80-90%. The Kruppel-like factor 5 (Klf5) is a transcription factor that play a critical role in cell transformation, proliferation and oncogenesis. Immunohistochemical analysis of KLF5 was performed in 1219 PTC cases. KLF5 over-expression was noted in 65.1% (793/1219) of PTCs, and was significantly associated with tall-cell variant (p &lt;0.0001), extrathyroidal extension (p = 0.0003), lymph node metastasis (p &lt; 0.0001) and stage IV tumors (p &lt; 0.0001). Significant association was also noted with HIF-1α over-expression (p = 0.0492). Interestingly, KLF5 over-expressing tumors showed poor disease-free survival (p = 0.0066). Functional studies in PTC cell lines showed that KLF5 co-immunoprecipitated with HIF-1α. Knockdown of KLF5 decreased the expression of HIF-1α while KLF5 was not affected by HIF-1α inhibition, suggesting that KLF5 is a functional upstream of HIF-1α. Down-regulation of KLF5 using specific inhibitor, ML264 or siRNA inhibited cell invasion and migration. In addition, treatment of PTC cell lines with ML264 resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner. Furthermore, silencing of KLF5 significantly decreased the self-renewal ability of spheroids generated from PTC cells. Our findings confer that KLF5 may be a potential therapeutic target for the treatment of papillary thyroid cancer.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 787
Author(s):  
Enrique García-Pérez ◽  
Dojin Ryu ◽  
Hwa-Young Kim ◽  
Hae Dun Kim ◽  
Hyun Jung Lee

Ochratoxin A (OTA) is a mycotoxin that is potentially carcinogenic to humans. Although its mechanism remains unclear, oxidative stress has been recognized as a plausible cause for the potent renal carcinogenicity observed in experimental animals. The effect of OTA on oxidative stress parameters in two cell lines of LLC-PK1 and HK-2 derived from the kidneys of pig and human, respectively, were investigated and compared. We found that the cytotoxicity of OTA on LLC-PK1 and HK-2 cells was dose- and time-dependent in both cell lines. Furthermore, increased intracellular reactive oxygen species (ROS) induced by OTA in both cell lines were observed in a time-dependent manner. Glutathione (GSH) was depleted by OTA at >48 h in HK-2 but not in LLC-PK1 cells. While the mRNA levels of glucose-6-phosphate dehydrogenase (G6PD) and glutathione peroxidase 1 (GPX1) in LLC-PK1 were down-regulated by 0.67- and 0.66-fold, respectively, those of catalase (CAT), glutathione reductase (GSR), and superoxide dismutase 1 (SOD) in HK-2 were up-regulated by 2.20-, 2.24-, and 2.75-fold, respectively, after 72 h exposure to OTA. Based on these results, we conclude that HK-2 cells are more sensitive to OTA-mediated toxicity than LLC-PK1, and OTA can cause a significant oxidative stress in HK-2 as indicated by changes in the parameter evaluated.


Sign in / Sign up

Export Citation Format

Share Document