scholarly journals Experimental Study on the Behavior of Steel–Concrete Composite Decks with Different Shear Span-to-Depth Ratios

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 624
Author(s):  
Sayan Sirimontree ◽  
Chanachai Thongchom ◽  
Suraparb Keawsawasvong ◽  
Peem Nuaklong ◽  
Pitcha Jongvivatsakul ◽  
...  

This paper presents the results of an experimental study on the mechanical behaviors of steel‒concrete composite decks with different shear span-to-depth ratios. Herein, four composite decks categorized into two types with shear span-to-depth ratios of 2.5 and 4.6 are designed for an experimental program. The decks then undergo the four-point bending tests until failure to investigate the structural responses, such as the load, displacement, crack mechanism, and failure mode. Conventional section analysis is used to derive the flexural strength of composite decks in comparison with the test results. Additionally, the ductility of the composite decks is assessed based on the displacement indices. The analysis results demonstrate that the stiffness and capacity of the composite deck increase with the decrease in the shear span length. However, the ductility of the composite slabs increases with the shear span length. The flexural strengths predicted by section analysis overestimate the actual test results. The shear span-to-depth ratio affects the crack mechanism of the composite decks.

2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4217-4233
Author(s):  
Ümmü Karagöz İşleyen ◽  
İrfan Peker

Effects of the number of layers and the number and typology of finger joints were studied relative to the bending behavior of glulam beam made of Scots pine (Pinus sylvestris) laminates. The investigated parameters of glulam beams with constant overall dimensions (width × depth × length) of 90 mm × 90 mm × 1710 mm were lamination thickness (18 mm or 30 mm), the distance of the finger joints (200, 400, and 600 mm), and finger direction (horizontal and vertical). A total of 14 experimental samples were produced (12 different finger joint beams and two reference beams without finger joints) and tested under four-point bending tests. Taguchi orthogonal experimental design was used to evaluate and optimize test results using the S/N ratio. The effects of main and interactions between producing parameters on strength of glulam beam were determined by variance analysis. According to the results of the analysis, it was determined that the number of layers and the direction of the finger had a significant effect on the flexural strength of the beams, but the finger distance was not significant. Moreover, the highest strength values were obtained in 5-layer finger-jointed beams with vertical finger direction.


2016 ◽  
Vol 827 ◽  
pp. 332-335 ◽  
Author(s):  
Jaroslav Topič ◽  
Jan Bartoš ◽  
Lubomír Kopecký ◽  
Karel Šeps ◽  
Zdeněk Prošek ◽  
...  

Presented article deals with the influence of PET fiber production on the bending strength of cement-based composite when incorporated into the fresh mortar, and comparison of results of 3-point and 4-point bending test. Cement paste samples were reinforced with 2 wt. % of primary or recycled PET fibers. The bending test was performed on prismatic samples with dimension of 40 × 40 × 160 mm. It was found that samples with recycled PET fibers, compared to primary ones, exhibit a decrease in bending strength. In the case of 4-point bending tests, the samples with recycled PET fibers exhibited higher bending strength than reference samples without any fibers. However, in the case of 3-point bending tests, the samples with recycled PET fibers had lower bending strength than the reference ones. The results suggest that recycled PET fibers could be used as an alternative to reinforce cement-based composites.


2010 ◽  
Vol 97-101 ◽  
pp. 1277-1281
Author(s):  
Bing Wang ◽  
Jian Guo Dai ◽  
Shi Lang Xu

Four-point bending tests are conducted on fiber reinforced cementitious composites (FRCC) overlaid concrete beams with a “T” notch. The objective is to evaluate the fracture behavior of the interface between the FRCC and the concrete substrates. Two types of FRCC overlays are prepared including a traditional steel fiber reinforced concrete (SFRC) composite and an ultra high toughness cementitious composite (UHTCC), which has a very high tensile strain capacity. All two types of FRCC are prepared in two forms: cast on-situ and prefabricated. Test results indicate that, in comparison with others, the prefabricated UHTCC overlay system has exhibited most desirable behavior in terms of the energy absorption in the interface as well as the crack distributions in the overlay, and therefore has a great potential for use in repair of concrete structures.


2019 ◽  
Vol 275 ◽  
pp. 01003
Author(s):  
Chang Liu ◽  
Guo Chen ◽  
Lingyu Li ◽  
Yu Qin ◽  
Jiayi Wang ◽  
...  

A novel bamboo-wood box beam was introduced in this paper, which consisted of laminated bamboo lumber flanges and OSB webs. Four-point bending tests were conducted on composite beams to investigate the effects of shear span ratio and stiffeners on failure mode and strength. The results showed that the composite beams with shear span ratio less than two failed in web shear failure, but for the others, the beams failed in twist and delamination of OSB in flanges. The load carrying capacity of beams decreased with the increase of shear span ratio. However, the mechanical performance of beams can be improved moderately by the presence of stiffeners, and theultimate bearing capacity and initial stiffness was increased by 16.5% and 13.1% respectively.


2015 ◽  
Vol 1106 ◽  
pp. 118-121 ◽  
Author(s):  
Adam Podstawka ◽  
Martin Kovar ◽  
Marek Foglar ◽  
Vladimir Kristek

Paper compares and discusses two different layouts of testing of mechanical and fracture properties of FRC, the three-point bending test and four-point bending test. The basis is extensive experimental program and analytical and statistical evaluation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Qingfang Lv ◽  
Yi Ding ◽  
Ye Liu

Until now, the systematical and comprehensive strengthening techniques have not been formed for the bamboo structure. Under such background, this paper aims to explore the effects of the application of the nonprestressed and prestressed basalt fiber-reinforced polymer (BFRP) bars on the flexural performance of the beams made of the laminated bamboo and reconstituted bamboo materials. Two series of four-point bending tests were thus conducted. In the first series of tests, the pure laminated bamboo beam and the laminated bamboo beam applied with nonprestressed BFRP bar were compared. Test results showed that the ultimate load and deformation capacity of the laminated bamboo beam was improved due to the existence of the BFRP bar. In the second series of tests, the reconstituted bamboo beams applied with nonprestressed and prestressed BFRP bars were compared. It is found that the ultimate load of the reconstituted bamboo beam was not improved by the application of the prestressed force. The further analysis related to the prestress loss demonstrated that the prestress loss before the release of the prestressed BFRP bar could reach up to 31.8–37.3% compared with the design initial prestressed stress. The prestress loss caused by the elastic deformation of the bamboo beam can be neglected. For all tested specimens, the plane section assumption was acceptable and the position of the neutral axis of the beam gradually moved down with the increase of the applied load.


2021 ◽  
Vol 13 (8) ◽  
pp. 4245
Author(s):  
Katarzyna Gabryś ◽  
Emil Soból ◽  
Wojciech Sas

The construction sector is currently struggling with the reuse of waste originating from the demolition and modernization of buildings and roads. Furthermore, old buildings are gradually being replaced by new structures. This brings a significant increase of concrete debris to waste landfills. To prevent this, many studies on the possibilities of recycling concrete, known as recycled concrete aggregate (RCA), have been done. To broaden the applicability of reused concrete, an understanding of its properties and engineering behavior is required. A difficulty in sustainable, proper management of RCA is the shortage of appropriate test results necessary to assess its utility. For this reason, in the present study, the physical, deformation, and stiffness properties of RCA with gravely grain distribution were analyzed carefully in the geotechnical laboratory. To examine the mentioned properties, an extensive experimental program was planned, which included the following studies: granulometric analysis, Proctor and oedometer tests, as well as resonant column tests. The obtained research results show that RCA has lower values of deformation and stiffness parameters than natural aggregates. However, after applying in oedometer apparatus repetitive cycles of loading/unloading/reloading, some significant improvement in the values of the parameters studied was noticed, most likely due to susceptibility to static compaction. Moreover, some critical reduction in the range of linear response of RCA to dynamic loading was observed.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Siva Avudaiappan ◽  
Erick I. Saavedra Flores ◽  
Gerardo Araya-Letelier ◽  
Walter Jonathan Thomas ◽  
Sudharshan N. Raman ◽  
...  

An experimental investigation is performed on various cold-formed profiled sheets to study the connection behavior of composite deck slab actions using bolted shear connectors. Various profiles like dovetailed (or) re-entrant profiles, rectangular profiles and trapezoidal profiles are used in the present investigation. This experimental investigation deals with the evaluation of various parameters such as the ultimate load carrying capacity versus deflection, load versus slip, ductility ratio, strain energy and modes of failure in composite slab specimens with varying profiles. From the test results the performance of dovetailed profiled composite slabs’ resistance is significantly higher than the other two profiled composite deck slabs.


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


Sign in / Sign up

Export Citation Format

Share Document