scholarly journals HOX Genes in High Grade Ovarian Cancer

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1107 ◽  
Author(s):  
Praveena Idaikkadar ◽  
Richard Morgan ◽  
Agnieszka Michael

HOX genes are highly conserved members of the homeobox superfamily that have a crucial role in determining cellular identity. High grade ovarian cancer is the most lethal gynaecological malignancy. Our understanding of the role of HOX genes in the oncogenesis of ovarian cancer is evolving, and here we review their dysregulated expression patterns, their function in cell survival and invasion, their potential uses as biomarkers, and ways in which HOX genes are being targeted with new and existing drugs.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11101-11101
Author(s):  
Erica Michelle Stringer ◽  
Maxwell N. Skor ◽  
Gini F. Fleming ◽  
Suzanne D. Conzen

11101 Background: Ovarian cancer is the leading cause of death from gynecologic malignancies. High-grade serous ovarian cancer (HGS-OvCa) is often initially sensitive to platinum-based therapy, but relapse rates remain high. The TCGA recently found that HGS-OvCas have a gene expression and mutational profile similar to that of triple negative breast cancer (TNBC). Previously, our group demonstrated that dexamethasone treatment decreased chemotherapy-induced tumor cell apoptosis in TNBC and HGS-OvCa cell lines. We have also shown that glucocorticoid receptor (GR) activation induces expression of anti-apoptotic genes SGK1 and MKP1/DUSP1 in both HGS-OvCa and TNBC cell lines and in primary human ovarian and TNBC tumors. Methods: We examined glucocorticoid receptor (GR), estrogen receptor (ER), and progesterone receptor (PR) expression in a panel of HGS-OvCa cell lines by Western analysis and qRT-PCR. We also performed apoptosis assays with and without mifepristone, glucocorticoid and/or chemotherapy treatment using IncuCyte live-cell imaging technology in order to measure the effect of GR modulation of chemotherapy sensitivity. Results: HGS-OvCa cell lines (including CAOV3, HeyA8, SKOV3, Monty-1) all had detectable GR expression; HeyA8, SKOV3, and Monty-1 cell lines expressed very low levels of ER-alpha while all other HGS-OvCa cell lines did not express any detectable ER-alpha. Furthermore, none of the HGS-OvCa cell lines tested expressed PR.Apoptosis assays revealed that GR activation significantly inhibited gemcitabine/carboplatin-induced apoptosis in HGS-OvCa cell lines and that mifepristone could reverse this cell survival effect, presumably through GR antagonism. Conclusions: These results suggest that treatment with mifepristone, a GR antagonist, reverses GR-mediated cell survival signaling in HGS-OvCa and increases chemotherapy-induced tumor cell death. To further investigate the role of GR activity in HGS-OvCa, we are currently performing xenograft experiments with chemotherapy +/- mifepristone treatment.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3727
Author(s):  
Dafne Jacome Sanz ◽  
Juuli Raivola ◽  
Hanna Karvonen ◽  
Mariliina Arjama ◽  
Harlan Barker ◽  
...  

Background: Dysregulated lipid metabolism is emerging as a hallmark in several malignancies, including ovarian cancer (OC). Specifically, metastatic OC is highly dependent on lipid-rich omentum. We aimed to investigate the therapeutic value of targeting lipid metabolism in OC. For this purpose, we studied the role of PCSK9, a cholesterol-regulating enzyme, in OC cell survival and its downstream signaling. We also investigated the cytotoxic efficacy of a small library of metabolic (n = 11) and mTOR (n = 10) inhibitors using OC cell lines (n = 8) and ex vivo patient-derived cell cultures (PDCs, n = 5) to identify clinically suitable drug vulnerabilities. Targeting PCSK9 expression with siRNA or PCSK9 specific inhibitor (PF-06446846) impaired OC cell survival. In addition, overexpression of PCSK9 induced robust AKT phosphorylation along with increased expression of ERK1/2 and MEK1/2, suggesting a pro-survival role of PCSK9 in OC cells. Moreover, our drug testing revealed marked differences in cytotoxic responses to drugs targeting metabolic pathways of high-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC) PDCs. Our results show that targeting PCSK9 expression could impair OC cell survival, which warrants further investigation to address the dependency of this cancer on lipogenesis and omental metastasis. Moreover, the differences in metabolic gene expression and drug responses of OC PDCs indicate the existence of a metabolic heterogeneity within OC subtypes, which should be further explored for therapeutic improvements.


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 579-595 ◽  
Author(s):  
B.G. Condie ◽  
M.R. Capecchi

Gene targeting in embryo-derived stem (ES) cells was used to generate mice with a disruption in the homeobox-containing gene Hoxd-3 (Hox-4.1). Mice homozygous for this mutation show a radically remodeled craniocervical joint. The anterior arch of the atlas is transformed to an extension of the basioccipital bone of the skull. The lateral masses of the atlas also assume a morphology more closely resembling the exoccipitals and, to a variable extent, fuse with the exoccipitals. Formation of the second cervical vertebra, the axis, is also affected. The dens and the superior facets are deleted, and the axis shows ‘atlas-like’ characteristics. An unexpected observation is that different parts of the same vertebra are differentially affected by the loss of Hoxd-3 function. Some parts are deleted, others are homeotically transformed to more anterior structures. These observations suggest that one role of Hox genes may be to differentially control the proliferation rates of the mesenchymal condensations that give rise to the vertebral cartilages. Within the mouse Hox complex, paralogous genes not only encode very similar proteins but also often exhibit very similar expression patterns. Therefore, it has been postulated that paralogous Hox genes would perform similar roles. Surprisingly, however, no tissues or structures are affected in common by mutations in the two paralogous genes, Hoxa-3 and Hoxd-3.


2018 ◽  
Vol 2 (S1) ◽  
pp. 22-22
Author(s):  
Muhan Hu ◽  
Ekta Tiwary ◽  
Rebecca Arend ◽  
Michael Miller

OBJECTIVES/SPECIFIC AIMS: To understand the role of PGF2a and to characterize a novel cyclooxyrgenase (COX)-independent prostaglandin synthesis pathway in epithelial ovarian cancer. METHODS/STUDY POPULATION: We used high grade epithelial ovarian cancer cell line (OVCAR3) as a model to study our pathway. Our main mode of PGF2a detection is through mass spectrometry. RESULTS/ANTICIPATED RESULTS: Our current results suggest the OVCAR3 cells may synthesize PGF2a independently of COX enzymes. We anticipate this novel pathway may be dependent on the TGFb pathway. DISCUSSION/SIGNIFICANCE OF IMPACT: Understanding the role and synthesis pathway of PGF2a may allow us to uncover a novel therapeutic pathway for high grade ovarian cancer.


Author(s):  
Marta De Donato ◽  
Gabriele Babini ◽  
Simona Mozzetti ◽  
Marianna Buttarelli ◽  
Alessandra Ciucci ◽  
...  

Abstract Background In spite of great progress in the surgical and clinical management, until now no significant improvement in overall survival of High-Grade Serous Ovarian Cancer (HGSOC) patients has been achieved. Important aspects for disease control remain unresolved, including unclear pathogenesis, high heterogeneity and relapse resistance after chemotherapy. Therefore, further research on molecular mechanisms involved in cancer progression are needed to find new targets for disease management. The Krüppel-like factors (KLFs) are a family of transcriptional regulators controlling several basic cellular processes, including proliferation, differentiation and migration. They have been shown to play a role in various cancer-relevant processes, in a context-dependent way. Methods To investigate a possible role of KLF family members as prognostic biomarkers, we carried out a bioinformatic meta-analysis of ovarian transcriptome datasets in different cohorts of late-stage HGSOC patients. In vitro cellular models of HGSOC were used for functional studies exploring the role of KLF7 in disease development and progression. Finally, molecular modelling and virtual screening were performed to identify putative KLF7 inhibitors. Results Bioinformatic analysis highlighted KLF7 as the most significant prognostic gene, among the 17 family members. Univariate and multivariate analyses identified KLF7 as an unfavourable prognostic marker for overall survival in late-stage TCGA-OV and GSE26712 HGSOC cohorts. Functional in vitro studies demonstrated that KLF7 can play a role as oncogene, driving tumour growth and dissemination. Mechanistic targets of KLF7 included genes involved in epithelial to mesenchymal transition, and in maintaining pluripotency and self-renewal characteristics of cancer stem cells. Finally, in silico analysis provided reliable information for drug-target interaction prediction. Conclusions Results from the present study provide the first evidence for an oncogenic role of KLF7 in HGSOC, suggesting it as a promising prognostic marker and therapeutic target.


2020 ◽  
Author(s):  
Amrita Salvi ◽  
Laura Hardy ◽  
Samantha Watry ◽  
Melissa Pergande ◽  
Stephanie M. Cologna ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Weiwei Gong ◽  
Yueyang Liu ◽  
Eleftherios P. Diamandis ◽  
Marion Kiechle ◽  
Holger Bronger ◽  
...  

Abstract Background High-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of ovarian cancer. A growing body of evidence suggests tumor-supporting roles of several members of the kallikrein-related peptidase (KLK) family, including KLK5 and KLK7, in this cancer subtype. In normal physiology, KLK5 and KLK7 are the major proteases involved in skin desquamation. Moreover, in several cancer types KLK5 and KLK7 co-expression has been observed. Recently, we have shown that elevated KLK5 mRNA levels are associated with an unfavorable prognosis in HGSOC. Therefore, the aim of this study was to investigate the clinical significance of KLK7 mRNA expression and to explore its relation to KLK5 levels in HGSOC. Methods mRNA expression levels of KLK7 were quantified by qPCR in a well-characterized patient cohort afflicted with advanced high-grade serous ovarian cancer (FIGO III/IV, n = 139). Previously determined KLK5 mRNA as well as KLK5 and KLK7 antigen concentrations were used to evaluate the relationship between the expression patterns of both factors on the mRNA as well as protein level in tumor tissue of HGSOC patients. Results There were strong, significant positive correlations between KLK5 and KLK7 both at the mRNA and the protein level, suggesting coordinate expression of these proteases in HGSOC. In univariate analyses, elevated KLK7 levels as well as the combination of KLK5 + KLK7 (high and/or high versus low/low) were significantly associated with worse progression-free survival (PFS). High mRNA expression levels of KLK7 and the combination of KLK5 and KLK7 showed a trend towards significance for overall survival (OS). In multivariate analyses, KLK7 mRNA expression represented an unfavorable, statistically significant independent predictor for PFS and OS. Conclusions The findings imply that both increased KLK5 and KLK7 mRNA expression levels represent unfavorable prognostic biomarkers in advanced high-grade serous ovarian cancer, whereby multivariate analyses indicate that KLK7 mRNA exhibits a stronger predictive value as compared to KLK5 mRNA and the combination of KLK5 and KLK7.


Sign in / Sign up

Export Citation Format

Share Document