scholarly journals Role of the Exosome in Ovarian Cancer Progression and Its Potential as a Therapeutic Target

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1147 ◽  
Author(s):  
Koji Nakamura ◽  
Kenjiro Sawada ◽  
Masaki Kobayashi ◽  
Mayuko Miyamoto ◽  
Aasa Shimizu ◽  
...  

Peritoneal dissemination is a distinct form of metastasis in ovarian cancer that precedes hematogenic or lymphatic metastasis. Exosomes are extracellular vesicles of 30–150 nm in diameter secreted by different cell types and internalized by target cells. There is emerging evidence that exosomes facilitate the peritoneal dissemination of ovarian cancer by mediating intercellular communication between cancer cells and the tumor microenvironment through the transfer of nucleic acids, proteins, and lipids. Furthermore, therapeutic applications of exosomes as drug cargo delivery are attracting research interest because exosomes are stabilized in circulation. This review highlights the functions of exosomes in each process of the peritoneal dissemination of ovarian cancer and discusses their potential for cancer therapeutics.

2021 ◽  
Vol 21 ◽  
Author(s):  
Tahereh Zadeh Mehrizi

: Today, Platelets and platelet-derived nanoparticles and microparticles have found many applications in nanomedical technology. The results of our review study show that no article has been published in this field to review the current status of applications of these platelet derivatives so far. Therefore, in present study, our goal is to compare the applications of platelet derivatives and review their latest status between 2010 and 2020 to present the latest findings to researchers. A very interesting point about the role of platelet derivatives is the presence of molecules on their surface which makes them capable of hiding from the immune system, reaching different target cells, and specifically attaching to different cell types. According to the results of this study, most of their applications include drug delivery, diagnosis of various diseases, and tissue engineering. However, their application in drug delivery is limited due to heterogeneity, large size, and the possibility of interference with cellular pathways in microparticles derived from other cells. On the other hand, platelet nanoparticles are more controllable and have been widely used for drug delivery in treatment of cancer, atherosclerosis, thrombosis, infectious diseases, repair of damaged tissue, and photothermal therapy. The results of this study show that platelet nanoparticles are more controllable than platelet microparticles and have a higher potential for use in medicine.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4763 ◽  
Author(s):  
Atefe Abak ◽  
Alireza Abhari ◽  
Sevda Rahimzadeh

Cancer progression is a polygenic procedure in which the exosomes can function as substantial roles. Exosomes are tiny, phospholipid bilayer membrane nanovesicles of endocytic derivation with a diameter of 40–100 nm. These nanovesicles can transport bioactive molecules containing mRNAs, proteins, DNA fragments, and non-coding RNAs from a donor cell to recipient cells, and cause the alteration in genetic and epigenetic factors and reprogramming of the target cells. Many diverse cell types such as mesenchymal cells, immune cells, and cancer cells can induce the release of exosomes. Increasing evidence illustrated that the exosomes derived from tumor cells might trigger the tumor initiation, tumor cell growth and progression, metastasis, and drug resistance. The secreted nanovesicles of exosomes can play significant roles in cells communicate via shuttling the nucleic acid molecules and proteins to target cells and tissues. In this review, we discussed multiple mechanisms related to biogenesis, load, and shuttle of the exosomes. Also, we illustrated the diverse roles of exosomes in several types of human cancer development, tumor immunology, angiogenesis, and metastasis. The exosomes may act as the promising biomarkers for the prognosis of various types of cancers which suggested a new pathway for anti-tumor therapeutic of these nanovesicles and promoted exosome-based cancer for clinical diagnostic and remedial procedures.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Stefania Raimondo ◽  
Chiara Corrado ◽  
Lavinia Raimondi ◽  
Giacomo De Leo ◽  
Riccardo Alessandro

In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1741
Author(s):  
Mayra Paolillo ◽  
Sergio Comincini ◽  
Sergio Schinelli

Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs. In this review, we first discuss published studies on the presumed EV “delivery code” and on the combinations of the hypothesized EV surface membrane “sender” and “recipient” molecules that may mediate EV targeting in intercellular communication. Then we briefly review the main experimental approaches and techniques, and the bioinformatic tools that can be used to identify and characterize the structure and functional role of EV surface membrane molecules. In the final part, we present innovative techniques and directions for future research that would improve and deepen our understandings of EV-cell targeting.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3388
Author(s):  
Mona Alharbi ◽  
Andrew Lai ◽  
Shayna Sharma ◽  
Priyakshi Kalita-de Croft ◽  
Nihar Godbole ◽  
...  

Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen). Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs. Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted sEVs, highlighting the cells’ heterogeneity. Proteins are involved in metabolic reprogramming such as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1–6 (UD16), and 6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease. These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity that confers carboplatin resistance on target cells. Furthermore, we propose that the expression of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of clinical utility in disease management.


Development ◽  
1973 ◽  
Vol 30 (2) ◽  
pp. 499-509
Author(s):  
Janet E. Hornby

Cell suspensions were prepared from the kidney, liver and heart of chick embryos of 5 or 8 days of incubation, and from the limb-buds of chick embryos of 5, 6, 7, 8 or 9 days of incubation. When these suspensions were aggregated under laminar shear in a Couette viscometer or random motion in a reciprocating shaker they obeyed the theoretical relationships derived for flocculating lyophobic sols. The values of the collision efficiency found for the different cell types under given conditions were used to calculate the force of interaction between cells of each type. The force of interaction ranged between 9 × 10−11 N (8-day heart) and 3 × 10−9 N (8-day liver). The forces of interaction between cells appear to be responsible for aligning the membranes of adjacent cells with a 10–20 nm gap. It is possible to arrange the cell types in a hierarchy based on the forces of interaction between them. The possible role of these forces in cell specificity is considered.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongyu Zhao ◽  
Yu Teng ◽  
Wende Hao ◽  
Jie Li ◽  
Zhefeng Li ◽  
...  

Abstract Background Ovarian cancer was one of the leading causes of female deaths. Patients with OC were essentially incurable and portends a poor prognosis, presumably because of profound genetic heterogeneity limiting reproducible prognostic classifications. Methods We comprehensively analyzed an ovarian cancer single-cell RNA sequencing dataset, GSE118828, and identified nine major cell types. Relationship between the clusters was explored with CellPhoneDB. A malignant epithelial cluster was confirmed using pseudotime analysis, CNV and GSVA. Furthermore, we constructed the prediction model (i.e., RiskScore) consisted of 10 prognosis-specific genes from 2397 malignant epithelial genes using the LASSO Cox regression algorithm based on public datasets. Then, the prognostic value of Riskscore was assessed with Kaplan–Meier survival analysis and time-dependent ROC curves. At last, a series of in-vitro assays were conducted to explore the roles of IL4I1, an important gene in Riskscore, in OC progression. Results We found that macrophages possessed the most interaction pairs with other clusters, and M2-like TAMs were the dominant type of macrophages. C0 was identified as the malignant epithelial cluster. Patients with a lower RiskScore had a greater OS (log-rank P < 0.01). In training set, the AUC of RiskScore was 0.666, 0.743 and 0.809 in 1-year, 3-year and 5-year survival, respectively. This was also validated in another two cohorts. Moreover, downregulation of IL4I1 inhibited OC cells proliferation, migration and invasion. Conclusions Our work provide novel insights into our understanding of the heterogeneity among OCs, and would help elucidate the biology of OC and provide clinical guidance in prognosis for OC patients.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 11 ◽  
Author(s):  
Björn L.D.M. Brücher ◽  
Ijaz S. Jamall

Fibroblasts are actively involved in the creation of the stroma and the extracellular matrix which are important for cell adhesion, cell–cell communication, and tissue metabolism. The role of fibrosis in carcinogenesis can be examined by analogy to tissues of various cancers. The orchestration of letters in the interplay of manifold components with signaling and crosstalk is incompletely understood but available evidence suggests a hitherto underappreciated role for fibrosis in carcinogenesis. Complex signaling and crosstalk by pathogenic stimuli evoke persistent subclinical inflammation, which in turn, results in a cascade of different cell types, ubiquitous proteins and their corresponding enzymes, cytokine releases, and multiple signaling pathways promoting the onset of fibrosis. There is considerable evidence that the body's attempt to resolve such a modified extracellular environment leads to further disruption of homeostasis and the genesis of the precancerous niche as part of the six-step process that describes carcinogenesis. The precancerous niche is formed and can be understood to develop as a result of (1) pathogenic stimulus, (2) chronic inflammation, and (3) fibrosis with alterations of the extracellular matrix, stromal rigidity, and mechano-transduction. This is why carcinogenesis is not just a process of aberrant cell growth with damaged genetic material but the role of the PCN in its entirety reveals how carcinogenesis can occur without invoking the need for somatic mutations.


Sign in / Sign up

Export Citation Format

Share Document