scholarly journals The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2106 ◽  
Author(s):  
Jacopo Boni ◽  
Carlota Rubio-Perez ◽  
Nuria López-Bigas ◽  
Cristina Fillat ◽  
Susana de la Luna

DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2509
Author(s):  
Reiko Sugiura ◽  
Ryosuke Satoh ◽  
Teruaki Takasaki

The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.


2016 ◽  
Vol 397 (7) ◽  
pp. 607-615 ◽  
Author(s):  
Katerina Rohlenova ◽  
Jiri Neuzil ◽  
Jakub Rohlena

Abstract Altered metabolism and resistance to cell death are typical hallmarks of cancer phenotype. Mitochondria are organelles central to cellular metabolism as well as to cell death induction. Hyperactivation of pro-survival and pro-proliferative pathways such as PI3K/AKT leads to cancer initiation, which affects mitochondria. Growing body of evidence indicates that oncogenes such as HER2, EGFR and RAS, as well as the downstream members of the PI3K/AKT signaling pathway, directly regulate mitochondria by translocating to the organelle. Here we discuss evidence of this scenario and consider mechanisms for direct regulation of mitochondrial function. Being in close proximity to mitochondrial bioenergetics machinery as well as to the regulators/executors of programed cell death, oncogenes in mitochondria may be ideally placed to perform this task. This represents a thus far under-explored area, which may be relevant to better understanding of cancer initiation, progression and treatment.


1998 ◽  
Vol 274 (1) ◽  
pp. L134-L142 ◽  
Author(s):  
Katharine Knobil ◽  
Augustine M. K. Choi ◽  
Gordon W. Weigand ◽  
David B. Jacoby

Influenza virus-induced epithelial damage may be mediated, in part, by reactive oxygen intermediates (ROIs). In this study, we investigated the role of ROIs in the influenza virus-induced gene expression of antioxidant enzymes and in the activation of nuclear factor-κB (NF-κB), an oxidant-sensitive transcriptional factor. Influenza virus infection increased production of intracellular ROIs in A549 pulmonary epithelial cells. Induction of manganese superoxide dismutase (MnSOD) mRNA correlated with increased MnSOD protein and enzyme activity. Influenza virus infection also activated NF-κB binding as determined by an electrophoretic mobility shift assay. Pretreatment of A549 cells with N-acetyl-l-cysteine attenuated virus-induced NF-κB activation and interleukin (IL)-8 mRNA induction but did not block induction of MnSOD mRNA. In contrast, pyrrolidine dithiocarbamate blocked activation of NF-κB and induction of MnSOD and IL-8 mRNAs. Treatment with pyrrolidine dithiocarbamate also markedly decreased virus-induced cell death. Thus oxidants are involved in influenza virus-induced activation of NF-κB, in the expression of IL-8 and MnSOD, and in virus-induced cell death.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3333 ◽  
Author(s):  
Anne-Marie Caminade

This review concerns the use of dendrimers, especially of phosphorhydrazone dendrimers, against cancers. After the introduction, the review is organized in three main topics, depending on the role played by the phosphorus dendrimers against cancers: (i) as drugs by themselves; (ii) as carriers of drugs; and (iii) as indirect inducer of cancerous cell death. In the first part, two main types of phosphorus dendrimers are considered: those functionalized on the surface by diverse organic derivatives, including known drugs, and those functionalized by diverse metal complexes. The second part will display the role of dendrimers as carriers of anticancer “drugs”, which can be either small molecules or anticancer siRNAs, or the combination of both. In the third part are gathered a few examples of phosphorhydrazone dendrimers that are not cytotoxic by themselves, but which under certain circumstances induce a cytotoxic effect on cancerous cells. These examples include a positive influence on the human immune system and the combination of bioimaging with photodynamic therapy properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guangbing Li ◽  
Haohai Zhang ◽  
Xueshuai Wan ◽  
Xiaobo Yang ◽  
Chengpei Zhu ◽  
...  

Long noncoding RNAs (lncRNAs) have been attracting immense research interests. However, only a handful of lncRNAs had been thoroughly characterized. They were involved in fundamental cellular processes including regulation of gene expression at epigenetics as well as tumorogenesis. In this paper, we give a systematic and comprehensive review of existing literature about lncRNA involvement in hepatocellular carcinoma. This review exhibited that lncRNAs played important roles in tumorigenesis and subsequent prognosis and metastasis of hepatocellular carcinoma and elucidated the role of some specific lncRNAs such as MALAT1 and HOTAIR in the pathophysiology of hepatocellular carcinoma and their potential of being therapeutic targets.


2011 ◽  
Vol 156 (1-2) ◽  
pp. 25-34 ◽  
Author(s):  
Atthapan Morchang ◽  
Umpa Yasamut ◽  
Janjuree Netsawang ◽  
Sansanee Noisakran ◽  
Wiyada Wongwiwat ◽  
...  

2016 ◽  
Vol 198 (11) ◽  
pp. 1675-1682 ◽  
Author(s):  
Kelly A. Miller ◽  
Madeline K. Sofia ◽  
Jacob W. A. Weaver ◽  
Christopher H. Seward ◽  
Michelle Dziejman

ABSTRACTGenes carried on the type 3 secretion system (T3SS) pathogenicity island ofVibrio choleraenon-O1/non-O139 serogroup strain AM-19226 must be precisely regulated in order for bacteria to cause disease. Previously reported results showed that both T3SS function and the presence of bile are required to cause Caco2-BBE cell cytotoxicity during coculture with strain AM-19226. We therefore investigated additional parameters affectingin vitrocell death, including bacterial load and the role of three transmembrane transcriptional regulatory proteins, VttRA, VttRB, and ToxR. VttRAand VttRBare encoded on the horizontally acquired T3SS genomic island, whereas ToxR is encoded on the ancestral chromosome. While strains carrying deletions in any one of the three transcriptional regulatory genes are unable to cause eukaryotic cell death, the results of complementation studies point to a hierarchy of regulatory control that converges onvttRBexpression. The data suggest both that ToxR and VttRAact upstream of VttRBand that modifying the level of eithervttRAorvttRBexpression can strongly influence T3SS gene expression. We therefore propose a model whereby T3SS activity and, hence,in vitrocytotoxicity are ultimately regulated byvttRBexpression.IMPORTANCEIn contrast to O1 and O139 serogroupV. choleraestrains that cause cholera using two main virulence factors (toxin-coregulated pilus [TCP] and cholera toxin [CT]), O39 serogroup strain AM-19226 uses a type 3 secretion system as its principal virulence mechanism. Although the regulatory network governing TCP and CT expression is well understood, the factors influencing T3SS-associated virulence are not. Using anin vitromammalian cell model to investigate the role of three ToxR-like transmembrane transcriptional activators in causing T3SS-dependent cytotoxicity, we found that expression levels and a hierarchical organization were important for promoting T3SS gene expression. Furthermore, our results suggest that horizontally acquired, ToxR-like proteins act in concert with the ancestral ToxR protein to orchestrate T3SS-mediated pathogenicity.


2020 ◽  
Vol 64 (6) ◽  
pp. 955-966 ◽  
Author(s):  
Yanqiu Shao ◽  
Qiangfeng Cliff Zhang

Abstract RNA is crucial for gene expression and regulation. Recent advances in understanding of RNA biochemistry, structure and molecular biology have revealed the importance of RNA structure in cellular processes and diseases. Various approaches to discovering drug-like small molecules that target RNA structure have been developed. This review provides a brief introduction to RNA structural biology and how RNA structures function as disease regulators. We summarize approaches to targeting RNA with small molecules and highlight their advantages, shortcomings and therapeutic potential.


Author(s):  
Yuan-Qing Pan ◽  
Li Xing

: RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to genesis of circular RNA.


Sign in / Sign up

Export Citation Format

Share Document