scholarly journals Mechanisms of T-Cell Exhaustion in Pancreatic Cancer

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2274
Author(s):  
Didem Saka ◽  
Muazzez Gökalp ◽  
Betül Piyade ◽  
Nedim Can Cevik ◽  
Elif Arik Sever ◽  
...  

T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC.

2021 ◽  
Author(s):  
Lin Zhang ◽  
Yicheng Guo ◽  
Hafumi Nishi

T cell exhaustion is a state of T cell dysfunction during chronic infection and cancer. Antibody-targeting immune checkpoint inhibitors to reverse T cell exhaustion is a promising approach for cancer immunotherapy. However, the therapeutic efficacy of known immune checkpoint inhibitors remains low. To expand the potential effective targets to reverse T cell exhaustion, a meta-analysis was performed to integrate seven exhaustion datasets caused by multiple diseases in both humans and mice. In this study, an overlap of 21 upregulated and 37 downregulated genes was identified in human and mouse exhausted CD8+ T cells. These genes were significantly enriched in exhaustion response-related pathways, such as signal transduction, immune system processes, and regulation of cytokine production. Gene expression network analysis revealed that the well-documented exhaustion genes were defined as hub genes in upregulated genes, such as programmed cell death protein 1 and cytotoxic T-lymphocyte associated protein 4. In addition, a weighted gene co-expression analysis identified 175 overlapping genes that were significantly correlated with the exhaustion trait in both humans and mice. This study found that nine genes, including thymocyte selection associated high mobility group box and CD200 receptor 1, were significantly upregulated and highly related to T cell exhaustion. These genes should be additional robust targets for immunotherapy and T-cell dysfunction studies.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 738 ◽  
Author(s):  
Raju K. Vaddepally ◽  
Prakash Kharel ◽  
Ramesh Pandey ◽  
Rohan Garje ◽  
Abhinav B. Chandra

Cancer is associated with higher morbidity and mortality and is the second leading cause of death in the US. Further, in some nations, cancer has overtaken heart disease as the leading cause of mortality. Identification of molecular mechanisms by which cancerous cells evade T cell-mediated cytotoxic damage has led to the modern era of immunotherapy in cancer treatment. Agents that release these immune brakes have shown activity to recover dysfunctional T cells and regress various cancer. Both cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and Programmed Death-1 (PD-1) play their role as physiologic brakes on unrestrained cytotoxic T effector function. CTLA-4 (CD 152) is a B7/CD28 family; it mediates immunosuppression by indirectly diminishing signaling through the co-stimulatory receptor CD28. Ipilimumab is the first and only FDA-approved CTLA-4 inhibitor; PD-1 is an inhibitory transmembrane protein expressed on T cells, B cells, Natural Killer cells (NKs), and Myeloid-Derived Suppressor Cells (MDSCs). Programmed Death-Ligand 1 (PD-L1) is expressed on the surface of multiple tissue types, including many tumor cells and hematopoietic cells. PD-L2 is more restricted to hematopoietic cells. Blockade of the PD-1 /PDL-1 pathway can enhance anti-tumor T cell reactivity and promotes immune control over the cancerous cells. Since the FDA approval of ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody) in 2011, six more immune checkpoint inhibitors (ICIs) have been approved for cancer therapy. PD-1 inhibitors nivolumab, pembrolizumab, cemiplimab and PD-L1 inhibitors atezolizumab, avelumab, and durvalumab are in the current list of the approved agents in addition to ipilimumab. In this review paper, we discuss the role of each immune checkpoint inhibitor (ICI), the landmark trials which led to their FDA approval, and the strength of the evidence per National Comprehensive Cancer Network (NCCN), which is broadly utilized by medical oncologists and hematologists in their daily practice.


2001 ◽  
Vol 75 (18) ◽  
pp. 8407-8423 ◽  
Author(s):  
Rong Ou ◽  
Shenghua Zhou ◽  
Lei Huang ◽  
Demetrius Moskophidis

ABSTRACT Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8+ T cells. In this work we studied the down-regulation of the virus-specific CD8+-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-α/β]), type II (IFN-γ), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8+-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8+ T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.


2018 ◽  
Vol 86 (9) ◽  
Author(s):  
Eileen A. Wong ◽  
Louis Joslyn ◽  
Nicole L. Grant ◽  
Edwin Klein ◽  
Philana Ling Lin ◽  
...  

ABSTRACTThe hallmarks of pulmonaryMycobacterium tuberculosisinfection are lung granulomas. These organized structures are composed of host immune cells whose purpose is to contain or clear infection, creating a complex hub of immune and bacterial cell activity, as well as limiting pathology in the lungs. Yet, given cellular activity and the potential for frequent interactions between host immune cells andM. tuberculosis-infected cells, we observed a surprisingly low quantity of cytokine-producing T cells (<10% of granuloma T cells) in our recent study ofM. tuberculosisinfection within nonhuman primate (NHP) granulomas. Various mechanisms could limit T cell function, and one hypothesis is T cell exhaustion. T cell exhaustion is proposed to result from continual antigen stimulation, inducing them to enter a state characterized by low cytokine production, low proliferation, and expression of a series of inhibitory receptors, the most common being PD-1, LAG-3, and CTLA-4. In this work, we characterized the expression of inhibitory receptors on T cells and the functionality of these cells in tuberculosis (TB) lung granulomas. We then used these experimental data to calibrate and inform an agent-based computational model that captures environmental, cellular, and bacterial dynamics within granulomas in lungs duringM. tuberculosisinfection. Together, the results of the modeling and the experimental work suggest that T cell exhaustion alone is not responsible for the low quantity ofM. tuberculosis-responsive T cells observed within TB granulomas and that the lack of exhaustion is likely an intrinsic property of granuloma structure.


2020 ◽  
Vol 10 ◽  
Author(s):  
Tao Hou ◽  
Shun Jiang ◽  
Yapeng Wang ◽  
Yangchun Xie ◽  
Haixia Zhang ◽  
...  

BackgroundThe immune checkpoint inhibitors (ICIs) have achieved great success in the treatment of non-small cell lung cancer (NSCLC) patients. However, the response rate is low. The molecular mechanism involved in the effectiveness of ICIs remains to be elucidated.MethodsATRX mutation incidence among human cancers was analyzed from TCGA database. Atrx-deficient Lewis lung cancer cell line (LLC-sgAtrx) was established via AAV-CRISPR. Subcutaneous and metastasis models were established by subcutaneous and intravenous injection of LLC-sgAtrx and LLC-sgNTC cells into female C57BL/6 mice. The mice were treated with anti-PD1, anti-CLTA4 or Rat IgG2a. Tumor volume was determined by Vernier calipers and the IVIS imaging system. The proportions of CD3+ T cells, CD45+ immune cells, and the expression of pMHC I and PDL1 were determined by flow cytometry. The T cell cytotoxicity was determined by co-culture experiment.ResultsTCGA data showed that Atrx is a tumor suppressor mutated at high frequency among various human cancers. The tumor volume of mice bearing LLC-sgAtrx was significantly shrinked and the median survival of mice was significantly longer after anti-PD1 and anti-CTLA4 treatment. Flowcytometry results showed that Atrx deficiency increase the penetration of CD3+ T cell into the tumor microenvironment and enhanced antigen presentation after IFNγ stimulation. Additionally, the tumor cells with Atrx deficiency were more easily to be damaged by T cells under IFNγ stimulation.ConclusionThe present study demonstrated that Atrx deficiency sensitize lung cancer cells to ICIs by multiple mechanisms. And ATRX may serve as a promising biomarker for ICIs which helps patient stratification and decision making.


2021 ◽  
Vol 9 (4) ◽  
pp. e002189
Author(s):  
Najmeh Bozorgmehr ◽  
Isobel Okoye ◽  
Olaide Oyegbami ◽  
Lai Xu ◽  
Amelie Fontaine ◽  
...  

BackgroundT cell exhaustion compromises antitumor immunity, and a sustained elevation of co-inhibitory receptors is a hallmark of T cell exhaustion in solid tumors. Similarly, upregulation of co-inhibitory receptors has been reported in T cells in hematological cancers such as chronic lymphocytic leukemia (CLL). However, the role of CD160, a glycosylphosphatidylinositol-anchored protein, as one of these co-inhibitory receptors has been contradictory in T cell function. Therefore, we decided to elucidate how CD160 expression and/or co-expression with other co-inhibitory receptors influence T cell effector functions in patients with CLL.MethodsWe studied 56 patients with CLL and 25 age-matched and sex-matched healthy controls in this study. The expression of different co-inhibitory receptors was analyzed in T cells obtained from the peripheral blood or the bone marrow. Also, we quantified the properties of extracellular vesicles (EVs) in the plasma of patients with CLL versus healthy controls. Finally, we measured 29 different cytokines, chemokines or other biomarkers in the plasma specimens of patients with CLL and healthy controls.ResultsWe found that CD160 was the most upregulated co-inhibitory receptor in patients with CLL. Its expression was associated with an exhausted T cell phenotype. CD160+CD8+ T cells were highly antigen-experienced/effector T cells, while CD160+CD4+ T cells were more heterogeneous. In particular, we identified EVs as a source of CD160 in the plasma of patients with CLL that can be taken up by T cells. Moreover, we observed a dominantly proinflammatory cytokine profile in the plasma of patients with CLL. In particular, interleukin-16 (IL-16) was highly elevated and correlated with the advanced clinical stage (Rai). Furthermore, we observed that the incubation of T cells with IL-16 results in the upregulation of CD160.ConclusionsOur study provides a novel insight into the influence of CD160 expression/co-expression with other co-inhibitory receptors in T cell effector functions in patients with CLL. Besides, IL-16-mediated upregulation of CD160 expression in T cells highlights the importance of IL-16/CD160 as potential immunotherapy targets in patients with CLL. Therefore, our findings propose a significant role for CD160 in T cell exhaustion in patients with CLL.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jeong A. Park ◽  
Nai-Kong V. Cheung

Abstract Background The cure rate for metastatic osteosarcoma has not substantially improved over the past decades. Clinical trials of anti-HER2 trastuzumab or anti-GD2 dinutuximab for metastatic or refractory osteosarcoma were not successful, and neither was immune checkpoint inhibitors (ICIs). Methods We tested various target antigen expressions on osteosarcoma cell lines using flow cytometry and analyzed in vitro T cell engaging BsAb (T-BsAb)-dependent T cell-mediated cytotoxicity using 4-h 51Cr release assay. We tested in vivo anti-tumor activities of T-BsAb targeting GD2 or HER2 in established osteosarcoma cell line or patient-derived xenograft (PDX) mouse models carried out in BALB-Rag2−/−IL-2R-γc-KO (BRG) mice. We also generated ex vivo BsAb-armed T cells (EATs) and studied their tumor-suppressive effect against osteosarcoma xenografts. In order to improve the anti-tumor response, ICIs, anti-human PD-1 (pembrolizumab) or anti-human PD-L1 (atezolizumab) antibodies were tested their synergy with GD2- or HER2-BsAb against osteosarcoma. Results GD2 and HER2 were chosen from a panel of surface markers on osteosarcoma cell lines and PDXs. Anti-GD2 BsAb or anti-HER2 BsAb exerted potent anti-tumor effect against osteosarcoma tumors in vitro and in vivo. T cells armed with anti-GD2-BsAb (GD2-EATs) or anti-HER2-BsAb (HER2-EATs) showed significant anti-tumor activities as well. Anti-PD-L1 combination treatment enhanced BsAb-armed T cell function in vivo and improved tumor control and survival of the mice, when given sequentially and continuously. Conclusion Anti-GD2 and anti-HER2 BsAbs were effective in controlling osteosarcoma. These data support the clinical investigation of GD2 and HER2 targeted T-BsAb treatment in combination with immune checkpoint inhibitors, particularly anti-PD-L1, in patients with osteosarcoma to improve their treatment outcome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takayoshi Yamauchi ◽  
Toshifumi Hoki ◽  
Takaaki Oba ◽  
Vaibhav Jain ◽  
Hongbin Chen ◽  
...  

AbstractImmune checkpoint inhibitors (ICI) have revolutionized treatment for various cancers; however, durable response is limited to only a subset of patients. Discovery of blood-based biomarkers that reflect dynamic change of the tumor microenvironment, and predict response to ICI, will markedly improve current treatment regimens. Here, we investigate CX3C chemokine receptor 1 (CX3CR1), a marker of T-cell differentiation, as a predictive correlate of response to ICI therapy. Successful treatment of tumor-bearing mice with ICI increases the frequency and T-cell receptor clonality of the peripheral CX3CR1+CD8+ T-cell subset that includes an enriched repertoire of tumor-specific and tumor-infiltrating CD8+ T cells. Furthermore, an increase in the frequency of the CX3CR1+ subset in circulating CD8+ T cells early after initiation of anti-PD-1 therapy correlates with response and survival in patients with non-small cell lung cancer. Collectively, these data support T-cell CX3CR1 expression as a blood-based dynamic early on-treatment predictor of response to ICI therapy.


Blood ◽  
2013 ◽  
Vol 121 (4) ◽  
pp. 604-613 ◽  
Author(s):  
Tamara Kögl ◽  
Jürgen Müller ◽  
Birthe Jessen ◽  
Annette Schmitt-Graeff ◽  
Gritta Janka ◽  
...  

Abstract Syntaxin-11 (Stx11), an atypical member of the SNARE protein family, is part of the cytolytic machinery of T and NK cells and involved in the fusion of lytic granules with the plasmamembrane. Functional loss of syntaxin-11 in humans causes defective degranulation and impaired cytolytic activity of T and NK cells. Furthermore, patients with STX11 deficiency develop familial hemophagocytic lymphohistiocytosis type 4 (FHL4), a life-threatening disease of severe hyperinflammation. We established Stx11-deficient mice as an animal model for FHL4. Stx11-deficient mice exhibited severely reduced degranulation and cytolytic activity of CTL and NK cells and developed all clinical symptoms of hemophagocytic lymphohistiocytosis (HLH) after infection with lymphocytic choriomeningitis virus (LCMV). The HLH phenotype was further characterized by hyperactive CD8 T cells and continuous IFN-γ production. However, in contrast to perforin-deficient mice, which represent a model for FHL2, progression of HLH was not fatal. Survival of Stx11-deficient mice was determined by exhaustion of antigen-specific T cells, characterized by expression of inhibitory receptors, sequential loss of effector functions, and finally T-cell deletion. Blockade of inhibitory receptors on T cells in Stx11-deficient mice converted nonfatal disease course into fatal HLH, identifying T-cell exhaustion as an important factor for determination of disease severity in HLH.


Sign in / Sign up

Export Citation Format

Share Document