scholarly journals Role of POT1 in Human Cancer

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2739 ◽  
Author(s):  
Yangxiu Wu ◽  
Rebecca C. Poulos ◽  
Roger R. Reddel

Telomere abnormalities facilitate cancer development by contributing to genomic instability and cellular immortalization. The Protection of Telomeres 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex. It directly binds to single-stranded telomeric DNA, protecting chromosomal ends from an inappropriate DNA damage response, and plays a role in telomere length regulation. Alterations of POT1 have been detected in a range of cancers. Here, we review the biological functions of POT1, the prevalence of POT1 germline and somatic mutations across cancer predisposition syndromes and tumor types, and the dysregulation of POT1 expression in cancers. We propose a framework for understanding how POT1 abnormalities may contribute to oncogenesis in different cell types. Finally, we summarize the clinical implications of POT1 alterations in the germline and in cancer, and possible approaches for the development of targeted cancer therapies.

MRS Bulletin ◽  
2009 ◽  
Vol 34 (6) ◽  
pp. 432-440 ◽  
Author(s):  
Rihe Liu ◽  
Brian K. Kay ◽  
Shaoyi Jiang ◽  
Shengfu Chen

AbstractTargeted cancer therapies focus on molecular and cellular changes that are specific to cancer and hold the promise of harming fewer normal cells, reducing side effects, and improving the quality of life. One major challenge in cancer nanotechnology is how to selectively deliver nanoparticles to diseased tissues while simultaneously minimizing the accumulation onto the nanoparticle of unwanted materials (e.g., proteins in the blood) during the delivery process. Once therapeutic nanoparticles have been created, very often they are linked or coated to other molecules that assist in targeting the delivery of nanoparticles to different cell types of the body. These linkers or coatings have been termed targeting ligands or “smart molecules” because of their inherent ability to direct selective binding to cell types or states and, therefore, confer “smartness” to nanoparticles. Likewise, “smartness” can be imparted to the nanoparticles to selectively repel unwanted entities in the body. To date, such smart molecules can consist of peptides, antibodies, engineered proteins, nucleic acid aptamers, or small organic molecules. This review describes how such smart molecules are discovered, enhanced, and anchored to nanoparticles, with an emphasis on how to minimize nonspecific interactions of nanoparticles to unintended targets.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 325
Author(s):  
Petra Korać ◽  
Mariastefania Antica ◽  
Maja Matulić

MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.


2021 ◽  
Vol 21 ◽  
Author(s):  
Tahereh Zadeh Mehrizi

: Today, Platelets and platelet-derived nanoparticles and microparticles have found many applications in nanomedical technology. The results of our review study show that no article has been published in this field to review the current status of applications of these platelet derivatives so far. Therefore, in present study, our goal is to compare the applications of platelet derivatives and review their latest status between 2010 and 2020 to present the latest findings to researchers. A very interesting point about the role of platelet derivatives is the presence of molecules on their surface which makes them capable of hiding from the immune system, reaching different target cells, and specifically attaching to different cell types. According to the results of this study, most of their applications include drug delivery, diagnosis of various diseases, and tissue engineering. However, their application in drug delivery is limited due to heterogeneity, large size, and the possibility of interference with cellular pathways in microparticles derived from other cells. On the other hand, platelet nanoparticles are more controllable and have been widely used for drug delivery in treatment of cancer, atherosclerosis, thrombosis, infectious diseases, repair of damaged tissue, and photothermal therapy. The results of this study show that platelet nanoparticles are more controllable than platelet microparticles and have a higher potential for use in medicine.


Development ◽  
1973 ◽  
Vol 30 (2) ◽  
pp. 499-509
Author(s):  
Janet E. Hornby

Cell suspensions were prepared from the kidney, liver and heart of chick embryos of 5 or 8 days of incubation, and from the limb-buds of chick embryos of 5, 6, 7, 8 or 9 days of incubation. When these suspensions were aggregated under laminar shear in a Couette viscometer or random motion in a reciprocating shaker they obeyed the theoretical relationships derived for flocculating lyophobic sols. The values of the collision efficiency found for the different cell types under given conditions were used to calculate the force of interaction between cells of each type. The force of interaction ranged between 9 × 10−11 N (8-day heart) and 3 × 10−9 N (8-day liver). The forces of interaction between cells appear to be responsible for aligning the membranes of adjacent cells with a 10–20 nm gap. It is possible to arrange the cell types in a hierarchy based on the forces of interaction between them. The possible role of these forces in cell specificity is considered.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiakang Jin ◽  
Jinti Lin ◽  
Ankai Xu ◽  
Jianan Lou ◽  
Chao Qian ◽  
...  

Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 11 ◽  
Author(s):  
Björn L.D.M. Brücher ◽  
Ijaz S. Jamall

Fibroblasts are actively involved in the creation of the stroma and the extracellular matrix which are important for cell adhesion, cell–cell communication, and tissue metabolism. The role of fibrosis in carcinogenesis can be examined by analogy to tissues of various cancers. The orchestration of letters in the interplay of manifold components with signaling and crosstalk is incompletely understood but available evidence suggests a hitherto underappreciated role for fibrosis in carcinogenesis. Complex signaling and crosstalk by pathogenic stimuli evoke persistent subclinical inflammation, which in turn, results in a cascade of different cell types, ubiquitous proteins and their corresponding enzymes, cytokine releases, and multiple signaling pathways promoting the onset of fibrosis. There is considerable evidence that the body's attempt to resolve such a modified extracellular environment leads to further disruption of homeostasis and the genesis of the precancerous niche as part of the six-step process that describes carcinogenesis. The precancerous niche is formed and can be understood to develop as a result of (1) pathogenic stimulus, (2) chronic inflammation, and (3) fibrosis with alterations of the extracellular matrix, stromal rigidity, and mechano-transduction. This is why carcinogenesis is not just a process of aberrant cell growth with damaged genetic material but the role of the PCN in its entirety reveals how carcinogenesis can occur without invoking the need for somatic mutations.


2020 ◽  
Author(s):  
Huixia Ren ◽  
Yanjun Li ◽  
Chengsheng Han ◽  
Yi Yu ◽  
Bowen Shi ◽  
...  

ABSTRACTThe Ca2+ modulated pulsatile secretions of glucagon and insulin by pancreatic α and β cells play a key role in glucose metabolism and homeostasis. However, how different types of islet cells couple and coordinate via paracrine interactions to produce various Ca2+ oscillation patterns are still elusive. By designing a microfluidic device to facilitate long-term recording of islet Ca2+ activity at single cell level and simultaneously identifying different cell types in live islet imaging, we show heterogeneous but intrinsic Ca2+ oscillation patterns of islets upon glucose stimulation. The α and β cells oscillate in antiphase and are globally phase locked to various phase delays, causing fast, slow or mixed oscillations. A mathematical model of coupled phase oscillators quantitatively agrees with experiments and reveals the essential role of paracrine regulations in tuning the oscillation modes. Our study highlights the importance of cell-cell interactions to generate stable but tunable islet oscillation patterns.


Sign in / Sign up

Export Citation Format

Share Document