scholarly journals Exploring the Role of Osteosarcoma-Derived Extracellular Vesicles in Pre-Metastatic Niche Formation and Metastasis in the 143-B Xenograft Mouse Osteosarcoma Model

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3457
Author(s):  
Alekhya Mazumdar ◽  
Joaquin Urdinez ◽  
Aleksandar Boro ◽  
Matthias J. E. Arlt ◽  
Fabian E. Egli ◽  
...  

The pre-metastatic niche (PMN) is a tumor-driven microenvironment in distant organs that can foster and support the survival and growth of disseminated tumor cells. This facilitates the establishment of secondary lesions that eventually form overt metastasis, the main cause of cancer-related death. In recent years, tumor-derived extracellular-vesicles (EVs) have emerged as potentially key drivers of the PMN. The role of the PMN in osteosarcoma metastasis is poorly understood and the potential contribution of osteosarcoma cell-derived EVs to PMN formation has not been investigated so far. Here, we characterize pulmonary PMN development using the spontaneously metastasizing 143-B xenograft osteosarcoma mouse model. We demonstrate the accumulation of CD11b+ myeloid cells in the pre-metastatic lungs of tumor-bearing mice. We also establish that highly metastatic 143-B and poorly metastatic SAOS-2 osteosarcoma cell-derived EV education in naïve mice can recapitulate the recruitment of myeloid cells to the lungs. Surprisingly, despite EV-induced myeloid cell infiltration in the pre-metastatic lungs, 143-B and SAOS-2 EVs do not contribute towards the 143-B metastatic burden in the context of both spontaneous as well as experimental metastasis in severe-combined immunodeficient (SCID) mice. Taken together, OS-derived EVs alone may not be able to form a functional PMN, and may perhaps require a combination of tumor-secreted factors along with EVs to do so. Additionally, our study gives a valuable insight into the PMN complexity by providing the transcriptomic signature of the premetastatic lungs in an osteosarcoma xenograft model for the first time. In conclusion, identification of regulators of cellular and molecular changes in the pre-metastatic lungs might lead to the development of a combination therapies in the future that interrupt PMN formation and combat osteosarcoma metastasis.

Blood ◽  
2009 ◽  
Vol 114 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Yaoyao Chen ◽  
Ricardo M. B. Costa ◽  
Nick R. Love ◽  
Ximena Soto ◽  
Martin Roth ◽  
...  

Abstract The molecular mechanisms that underlie the development of primitive myeloid cells in vertebrate embryos are not well understood. Here we characterize the role of cebpa during primitive myeloid cell development in Xenopus. We show that cebpa is one of the first known hematopoietic genes expressed in the embryo. Loss- and gain-of-function studies show that it is both necessary and sufficient for the development of functional myeloid cells. In addition, we show that cebpa misexpression leads to the precocious induction of myeloid cell markers in pluripotent prospective ectodermal cells, without the cells transitioning through a general mesodermal state. Finally, we use live imaging to show that cebpa-expressing cells exhibit many attributes of terminally differentiated myeloid cells, such as highly active migratory behavior, the ability to quickly and efficiently migrate toward wounds and phagocytose bacteria, and the ability to enter the circulation. Thus, C/EPBα is the first known single factor capable of initiating an entire myelopoiesis pathway in pluripotent cells in the embryo.


2020 ◽  
Vol 31 (9) ◽  
pp. 1996-2012 ◽  
Author(s):  
Simon Melderis ◽  
Julia Hagenstein ◽  
Matthias Tobias Warkotsch ◽  
Julien Dang ◽  
Georg Rudolf Herrnstadt ◽  
...  

BackgroundRecent studies have identified the EGF receptor (EGFR) ligand amphiregulin (AREG) as an important mediator of inflammatory diseases. Both pro- and anti-inflammatory functions have been described, but the role of AREG in GN remains unknown.MethodsThe nephrotoxic nephritis model of GN was studied in AREG−/− mice after bone marrow transplantation, and in mice with myeloid cell–specific EGFR deficiency. Therapeutic utility of AREG neutralization was assessed. Furthermore, AREG's effects on renal cells and monocytes/macrophages (M/M) were analyzed. Finally, we evaluated AREG expression in human renal biopsies.ResultsRenal AREG mRNA was strongly upregulated in murine GN. Renal resident cells were the most functionally relevant source of AREG. Importantly, the observation that knockout mice showed significant amelioration of disease indicates that AREG is pathogenic in GN. AREG enhanced myeloid cell responses via inducing chemokine and colony stimulating factor 2 (CSF2) expression in kidney resident cells. Furthermore, AREG directly skewed M/M to a proinflammatory M1 phenotype and protected them from apoptosis. Consequently, anti-AREG antibody treatment dose-dependently ameliorated GN. Notably, selective abrogation of EGFR signaling in myeloid cells was sufficient to protect against nephritis. Finally, strong upregulation of AREG expression was also detected in kidneys of patients with two forms of crescentic GN.ConclusionsAREG is a proinflammatory mediator of GN via (1) enhancing renal pathogenic myeloid cell infiltration and (2) direct effects on M/M polarization, proliferation, and cytokine secretion. The AREG/EGFR axis is a potential therapeutic target for acute GN.


2020 ◽  
Author(s):  
Yongjie Wang ◽  
Buyi Zhang ◽  
Jianli Wang ◽  
Haijian Wu ◽  
Shenbin Xu ◽  
...  

Abstract Background: Lysosome-associated membrane protein type 2A (LAMP-2A) is the key component of chaperone-mediated autophagy (CMA), a cargo-selective lysosomal degradation pathway. Aberrant LAMP-2A expression and CMA activation have been demonstrated in various human malignancies. The study focusing on the intrinsic role of LAMP-2A and CMA in glioblastoma (GBM), and downstream mechanism could provide valuable insight into the pathogenesis and novel therapeutic modality of GBM. Methods: The levels of LAMP-2A, nuclear receptor co-repressor (N-CoR), unfolded protein reaction (UPR) and apoptosis were examined in clinical samples. LAMP-2A siRNA and shRNA were constructed to manipulate CMA activation. The role of CMA and downstream mechanism through degradation of N-CoR and arresting UPR mediated apoptosis were explored in GBM cells and nude mouse xenograft model. Results: Elevated LAMP-2A and associated decreased N-CoR expression were observed in GBM as compared with peritumoral region and low-grade glioma. Inhibited UPR and apoptosis were observed in GBM with high LAMP-2A expression. In vitro study demonstrated co-localization and interaction between LAMP-2A and N-CoR. LAMP-2A silencing up-regulated N-CoR and aroused UPR pathway, leading to apoptosis, while N-CoR silencing led to an opposite result. In vivo study further confirmed that LAMP-2A inhibition arrested tumor growth by promoting apoptosis.Conclusions: Our results demonstrated the central role of CMA in mediating N-CoR degradation and protecting GBM cells against UPR and apoptosis, and provided evidence of LAMP-2A as potential biomarker. Further research focusing on CMA with other tumorigenic process is needed and selective modulators of LAMP-2A remain to be investigated to provide a novel therapeutic strategy for GBM.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Aliia Fatkhullina ◽  
Iuliia Peshkova ◽  
Ekaterina Koltsova

Atherosclerosis is lipid-driven chronic inflammatory disease of the arterial wall mediated by innate and adaptive immune responses. Inflammation promotes the development atherosclerotic plaques. Cytokines are soluble mediators of inflammation and important players in the pathogenesis of atherosclerosis. IL-23, a cytokine of IL-6/IL-12 cytokines superfamily is produced by myeloid cells and regulates the production of IL-17 and IL-22 by T helper IL-17 producing (Th17) cells, innate lymphoid cells of type 3 (ILC3) and gamma delta T cells in various auto-inflammatory diseases. IL-23R expression was also detected on myeloid cells but its role in regulation of myeloid cell function is not well defined. The level of IL-23 was shown to be upregulated in cardiovascular pathologies. Therefore, we decided to address the role of IL-23 in atherosclerosis using Il23p19 and Il23(R) receptor deficient mice. Surprisingly, atherosclerosis prone, Ldlr -/- mice transplanted with Il23p19 -/- or Il23r -/- bone marrow and fed with Western diet (WD) for 14 weeks demonstrated acceleration of atherosclerosis progression, which was characterized by increased accumulation of various hematopoietic cells in the aortas. Analysis of cytokine production unexpectedly revealed no changes in IL-17A and IFN-gamma production among CD4 T cells in the aortas. This effect was specific to aortas, as IL-17A production in the intestine of Il23p19 -/- mice was reduced, similarly to previously published observations. On the other hand, macrophages from Il23p19 -/- mice were able to uptake oxLDL in more efficient manner compared to wt controls, suggesting the regulatory role of IL-23 in foam cells formation. We also found enhanced inflammatory gene expression in aortas of Il23p19 -/- -> Ldlr -/- and Il23r -/- -> Ldlr -/- mice compared to wt controls. Overall our data suggest IL-17 independent atheroprotective role of IL-23.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Sara N Vallerie ◽  
Farah Kramer ◽  
Jenny E Kanter ◽  
Shelley Barnhart ◽  
Richard M Breyer ◽  
...  

Diabetes is associated with an increased risk of cardiovascular disease, largely due to increased atherosclerosis. Our studies have suggested myeloid cell prostaglandin E 2 (PGE 2 ) production as a possible mediator of diabetes-accelerated atherosclerosis in a virally-induced mouse model of type 1 diabetes. Prostaglandin E Receptor 4 (EP4; Ptger4 ) is a major PGE 2 receptor in myeloid cells. We hypothesized that generation of a mouse model of myeloid cell-targeted EP4-deficiency would allow us to test the role of myeloid EP4 in diabetes-accelerated atherosclerosis. Thus, we generated a Ptger4 flox/flox LysM-Cre tg/tg mouse model. Peritoneal macrophages isolated from these myeloid cell EP4-deficient (EP4 M-/- ) mice expressed <90% Ptger4 mRNA compared to LysM-Cre tg/tg controls (n=10; p<0.0001). To analyze the role of myeloid cell EP4 in diabetes-accelerated atherosclerosis, we transplanted bone marrow from EP4 M-/- mice and littermate controls into lethally irradiated Ldlr -/- RIP-LCMV mice (the model of type 1 diabetes) and, after 7 weeks of recovery, induced diabetes by viral infection and fed the mice a low-fat semi-purified diet for an additional 12 weeks. Diabetic EP4 M-/- mice had similar blood glucose (568 ± 15 vs. 569 ± 15 mg/dl), blood cholesterol (531 ± 29 vs. 510 ± 37 mg/dl), and plasma triglycerides (249 ± 49 vs. 247 ± 44 mg/dl) as diabetic controls (n=15 all groups; mean ± SEM). At the endpoint, aortas were harvested for lesion area quantification. Diabetic EP4 M-/- and diabetic wild type mice had similar lesion area (1.9% ± 0.2 vs. 1.7% ± 0.2), which were both increased (p < 0.01; n=9-15) as compared to their non-diabetic controls. Additionally, we analyzed the role of EP4 in inflammatory activation of myeloid cells ex vivo. EP4-deficiency had no significant effect on basal or lipopolysaccharide (LPS)-induced inflammatory gene expression in the absence of PGE 2 . Pretreatment of the cells with PGE 2 (10 nM) followed by LPS stimulation resulted in a significant reduction of Tnfa and Il6 mRNA compared to LPS alone, and this anti-inflammatory effect of PGE 2 was completely blocked in EP4-deficient cells. These results suggest that myeloid cell EP4 mediates anti-inflammatory actions of PGE 2 but that it is not involved in diabetes-accelerated atherosclerosis.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Michael C. Schmid ◽  
Judith A. Varner

Myeloid cells are a heterogeneous population of bone marrow-derived cells that play a critical role during growth and metastasis of malignant tumors. Tumors exhibit significant myeloid cell infiltrates, which are actively recruited to the tumor microenvironment. Myeloid cells promote tumor growth by stimulating tumor angiogenesis, suppressing tumor immunity, and promoting metastasis to distinct sites. In this review, we discuss the role of myeloid cells in promoting tumor angiogenesis. Furthermore, we describe a subset of myeloid cells with immunosuppressive activity (known as myeloid-derived suppressor cells). Finally, we will comment on the mechanisms regulating myeloid cell recruitment to the tumor microenvironment and on the potential of myeloid cells as new targets for cancer therapy.


2014 ◽  
Vol 8 (1) ◽  
pp. 66-78 ◽  
Author(s):  
Vikram Mehraj ◽  
Mohammad-Ali Jenabian ◽  
Kishanda Vyboh ◽  
Jean-Pierre Routy

Over thirty years of extensive research has not yet solved the complexity of HIV pathogenesis leading to a continued need for a successful cure. Recent immunotherapy-based approaches are aimed at controlling the infection by reverting immune dysfunction. Comparatively less appreciated than the role of T cells in the context of HIV infection, the myeloid cells including macrophages monocytes, dendritic cells (DCs) and neutrophils contribute significantly to immune dysfunction. Host restriction factors are cellular proteins expressed in these cells which are circumvented by HIV. Guided by the recent literature, the role of myeloid cells in HIV infection will be discussed highlighting potential targets for immunotherapy. HIV infection, which is mainly characterized by CD4 T cell dysfunction, also manifests in a vicious cycle of events comprising of inflammation and immune activation. Targeting the interaction of programmed death-1 (PD-1), an important regulator of T cell function; with PD-L1 expressed mainly on myeloid cells could bring promising results. Macrophage functional polarization from pro-inflammatory M1 to anti-inflammatory M2 and vice versa has significant implications in viral pathogenesis. Neutrophils, recently discovered low density granular cells, myeloid derived suppressor cells (MDSCs) and yolk sac macrophages provide new avenues of research on HIV pathogenesis and persistence. Recent evidence has also shown significant implications of neutrophil extracellular traps (NETs), antimicrobial peptides and opsonizing antibodies. Further studies aimed to understand and modify myeloid cell restriction mechanisms have the potential to contribute in the future development of more effective anti-HIV interventions that may pave the way to viral eradication.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3429
Author(s):  
Aisling Forder ◽  
Chi-Yun Hsing ◽  
Jessica Trejo Vazquez ◽  
Cathie Garnis

Communication between cancer cells and the surrounding stromal cells of the tumor microenvironment (TME) plays a key role in promoting metastasis, which is the major cause of cancer death. Small membrane-bound particles called extracellular vesicles (EVs) are released from both cancer and stromal cells and have a key role in mediating this communication through transport of cargo such as various RNA species (mRNA, miRNA, lncRNA), proteins, and lipids. Tumor-secreted EVs have been observed to induce a pro-tumorigenic phenotype in non-malignant cells of the stroma, including fibroblasts, endothelial cells, and local immune cells. These cancer-associated cells then drive metastasis by mechanisms such as increasing the invasiveness of cancer cells, facilitating angiogenesis, and promoting the formation of the pre-metastatic niche. This review will cover the role of EV-mediated signaling in the TME during metastasis and highlight the therapeutic potential of targeting these pathways to develop biomarkers and novel treatment strategies.


2016 ◽  
Vol 23 (2) ◽  
pp. 206-215 ◽  
Author(s):  
Di Jiang ◽  
Jennifer Matsuda ◽  
Reena Berman ◽  
Niccolette Schaefer ◽  
Connor Stevenson ◽  
...  

Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM–Cre knock-in mice. The resulting LysM–Cre+/IRAK-Mfl/wt and control (LysM–Cre–/IRAK-Mfl/wt) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM–Cre+/IRAK-Mfl/wt mice compared with control mice. Following PA infection, LysM–Cre+/IRAK-Mfl/wt mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM–Cre+/IRAK-Mfl/wt mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.


2010 ◽  
Vol 207 (8) ◽  
pp. 1757-1773 ◽  
Author(s):  
Patrizia Scapini ◽  
Yongmei Hu ◽  
Ching-Liang Chu ◽  
Thi-Sau Migone ◽  
Anthony L. DeFranco ◽  
...  

Autoimmunity is traditionally attributed to altered lymphoid cell selection and/or tolerance, whereas the contribution of innate immune cells is less well understood. Autoimmunity is also associated with increased levels of B cell–activating factor of the TNF family (BAFF; also known as B lymphocyte stimulator), a cytokine that promotes survival of self-reactive B cell clones. We describe an important role for myeloid cells in autoimmune disease progression. Using Lyn-deficient mice, we show that overproduction of BAFF by hyperactive myeloid cells contributes to inflammation and autoimmunity in part by acting directly on T cells to induce the release of IFN-γ. Genetic deletion of IFN-γ or reduction of BAFF activity, achieved by either reducing myeloid cell hyperproduction or by treating with an anti-BAFF monoclonal antibody, reduced disease development in lyn−/− mice. The increased production of IFN-γ in lyn−/− mice feeds back on the myeloid cells to further stimulate BAFF release. Expression of BAFF receptor on T cells was required for their full activation and IFN-γ release. Overall, our data suggest that the reciprocal production of BAFF and IFN-γ establishes an inflammatory loop between myeloid cells and T cells that exacerbates autoimmunity in this model. Our findings uncover an important pathological role of BAFF in autoimmune disorders.


Sign in / Sign up

Export Citation Format

Share Document