scholarly journals Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4529
Author(s):  
Diego José Laderach ◽  
Daniel Compagno

Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 821
Author(s):  
Prathyaya Ramesh ◽  
Rohan Shivde ◽  
Dinesh Jaishankar ◽  
Diana Saleiro ◽  
I. Caroline Le Poole

Cytokines are key molecules within the tumor microenvironment (TME) that can be used as biomarkers to predict the magnitude of anti-tumor immune responses. During immune monitoring, it has been customary to predict outcomes based on the abundance of a single cytokine, in particular IFN-γ or TGF-β, as a readout of ongoing anti-cancer immunity. However, individual cytokines within the TME can exhibit dual opposing roles. For example, both IFN-γ and TGF-β have been associated with pro- and anti-tumor functions. Moreover, cytokines originating from different cellular sources influence the crosstalk between CD4+ and CD8+ T cells, while the array of cytokines expressed by T cells is also instrumental in defining the mechanisms of action and efficacy of treatments. Thus, it becomes increasingly clear that a reliable readout of ongoing immunity within the TME will have to include more than the measurement of a single cytokine. This review focuses on defining a panel of cytokines that could help to reliably predict and analyze the outcomes of T cell-based anti-tumor therapies.


2021 ◽  
Author(s):  
Ying-Ying Li ◽  
Kun Guo ◽  
Zhiyuan Peng ◽  
Deming Kong ◽  
Xiaolin Hao ◽  
...  

Author(s):  
Wenqi Ti ◽  
Jianbo Wang ◽  
Yufeng Cheng

Despite great advances in research and treatment, lung cancer is still one of the most leading causes of cancer-related deaths worldwide. Evidence is mounting that dynamic communication network in the tumor microenvironment (TME) play an integral role in tumor initiation and development. Cancer-associated fibroblasts (CAFs), which promote tumor growth and metastasis, are the most important stroma component in the tumor microenvironment. Consequently, in-depth identification of relevant molecular mechanisms and biomarkers related to CAFs will increase understanding of tumor development process, which is of great significance for precise treatment of lung cancer. With the development of sequencing technologies such as microarray and next-generation sequencing, lncRNAs without protein-coding ability have been found to act as communicators between tumor cells and CAFs. LncRNAs participate in the activation of normal fibroblasts (NFs) to CAFs. Moreover, activated CAFs can influence the gene expression and secretion characteristics of cells through lncRNAs, enhancing the malignant biological process in tumor cells. In addition, lncRNA-loaded exosomes are considered to be another important form of crosstalk between tumor cells and CAFs. In this review, we focus on the interaction between tumor cells and CAFs mediated by lncRNAs in the lung cancer microenvironment, and discuss the analysis of biological function and molecular mechanism. Furthermore, it contributes to paving a novel direction for the clinical treatment of lung cancer.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1819-1819 ◽  
Author(s):  
Je-Jung Lee ◽  
Tan-Huy Chu ◽  
Manh-Cuong Vo ◽  
Hye-Sung Park ◽  
Thangaraj Jaya Lakshmi ◽  
...  

Multiple myeloma (MM) is the second-most-common hematologic malignancy, and develops from clonal malignant plasma cells within bone marrow. Despite tremendous improvements in therapeutic strategies (e.g. stem cell transplantation, immune-modulatory drugs (IMiDs), proteasome inhibitors, and, more recently, immunotherapy), which have led to improved responses to treatment and overall survival, most patients eventually relapse. We have previously shown that the immunization with tumor antigen-loaded dendritic cells (DCs) and pomalidomide/dexamethasone synergistically potentiates the enhancing the antitumor immunity in a myeloma mouse model. In the present study, we investigated whether a DC-based vaccine combined with pomalidomide and PD-L1 blockade has a synergistic effect in a murine MM model. MOPC-315 cell lines were injected subcutaneously to establish MM-bearing mice. Four test groups were used to mimic the clinical protocol: (1) PBS control, (2) DCs + pomalidomide/dexamethasone, (3) pomalidomide/dexamethasone + PD-L1 blockade, and (4) DCs + pomalidomide/dexamethasone + PD-L1 blockade. After treatment, preclinical response and in vitro immunological responses were evaluated. The study was designed to closely mimic the clinical MM treatment protocol and clearly demonstrated that combination treatment with DCs + pomalidomide with dexamethasone + PD-L1 blockade more strongly inhibited MM tumor growth. Consequently, the mice treated with DCs + pomalidomide with dexamethasone + PD-L1 blockade displayed markedly induced tumor regression and significantly prolonged survival, as well as very strong anti-myeloma CTL responses and increased numbers of effector cells (such as CD4+ T cells, CD8+ T cells, memory T cells, NK cells and M1 macrophages) associated with antitumor effects. This treatment also effectively decreased the proportions of suppressor cells, including MDSCs, Tregs and M2 macrophages, in the spleen and tumor microenvironment of treated mice. Tregs, MDSCs and M2 macrophages play crucial roles in immunosuppression and tolerance, which are mediated by tumor-secreted cytokines. The inhibition of Tregs, MDSC and M2 macrophage accumulation may enhance systemic cell-mediated immunity through the activation of DCs or CTLs. Importantly, treatment with pomalidomide with dexamethasone + PD-L1 blockade led to decreased expression of PD-L1 and CTLA-4 in treated mice, which further induced effector cell infiltration of the tumor microenvironment. Moreover, DCs + pomalidomide with dexamethasone + PD-L1 blockade induced the activation of cell-mediated immunity by increasing Th1-specific immune responses, as evidenced by the increased production of IFN-γ and a decrease in the regulatory-specific immune response, as evidenced by the decreased production of TGF-β, IL-10 and VEGF in the spleen and tumor microenvironment. These findings show that inducing the systemic immune response represent a means of treating myeloma. Immunotherapy clearly represents a revolution in cancer care, and promising responses have been shown to various treatments, particularly immune checkpoint inhibitors, IMiDs, DCs and CAR T cells. However, not all patients are responsive to current immunotherapies, and among those patients who do respond, the effects are not always long-lasting. Thus, combination approaches are a cornerstone of cancer therapy for improving patient outcomes in MM. This study demonstrated that the combination of DC vaccination + pomalidomide with dexamethasone + PD-L1 blockade synergistically enhances myeloma immune responses to inhibit tumor growth, restores and enhances host immune effector cells, and reduces the generation of immune suppressor cells in MM. This study provides a framework for developing and understanding the role of immunotherapeutic modalities employing DCs, pomalidomide and PD-L1 blockade to inhibit tumor growth and restore immune function in myeloma-bearing mice. Figure Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dong Zhang ◽  
Yingnan Wang ◽  
Qifeng Yang

Background: Epigenetic dysregulation via aberrant DNA methylation has gradually become recognized as an efficacious signature for predicting tumor prognosis and response to therapeutic targets. However, reliable DNA methylation biomarkers describing tumorigenesis remain to be comprehensively explored regarding their prognostic and therapeutic potential in breast cancer (BC).Methods: Whole-genome methylation datasets integrated from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were profiled (n = 1,268). A three-stage selection procedure (discovery, training, and external validation) was utilized to screen out the prominent biomarkers and establish a robust risk score from more than 300,000 CpG sites after quality control, rigorous filtering, and reducing dimension. Moreover, gene set enrichment analyses guided us to systematically correlate this epigenetic risk score with immunological characteristics, including immunomodulators, anti-cancer immunity cycle, immune checkpoints, tumor-infiltrating immune cells and a series of signatures upon modulating components within BC tumor microenvironment (TME). Multi-omics data analyses were performed to decipher specific genomic alterations in low- and high-risk patients. Additionally, we also analyzed the role of risk score in predicting response to several treatment options.Results: A 10-CpG-based prognostic signature which could significantly and independently categorize BC patients into distinct prognoses was established and sufficiently validated. And we hypothesize that this signature designs a non-inflamed TME in BC based on the evidence that the derived risk score is negatively correlated with tumor-associated infiltrating immune cells, anti-cancer immunity cycle, immune checkpoints, immune cytolytic activity, T cell inflamed score, immunophenoscore, and the vast majority of immunomodulators. The identified high-risk patients were characterized by upregulation of immune inhibited oncogenic pathways, higher TP53 mutation and copy number burden, but lower response to cancer immunotherapy and chemotherapy.Conclusion: Our work highlights the complementary roles of 10-CpG-based signature in estimating overall survival in BC patients, shedding new light on investigating failed events concerning immunotherapy at present.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1083 ◽  
Author(s):  
Muhammad Zaeem Noman ◽  
Meriem Hasmim ◽  
Audrey Lequeux ◽  
Malina Xiao ◽  
Caroline Duhem ◽  
...  

Initially believed to be a disease of deregulated cellular and genetic expression, cancer is now also considered a disease of the tumor microenvironment. Over the past two decades, significant and rapid progress has been made to understand the complexity of the tumor microenvironment and its contribution to shaping the response to various anti-cancer therapies, including immunotherapy. Nevertheless, it has become clear that the tumor microenvironment is one of the main hallmarks of cancer. Therefore, a major challenge is to identify key druggable factors and pathways in the tumor microenvironment that can be manipulated to improve the efficacy of current cancer therapies. Among the different tumor microenvironmental factors, this review will focus on hypoxia as a key process that evolved in the tumor microenvironment. We will briefly describe our current understanding of the molecular mechanisms by which hypoxia negatively affects tumor immunity and shapes the anti-tumor immune response. We believe that such understanding will provide insight into the therapeutic value of targeting hypoxia and assist in the design of innovative combination approaches to improve the efficacy of current cancer therapies, including immunotherapy.


Author(s):  
Yanhua Xu ◽  
Shan Kong ◽  
Shiyi Qin ◽  
Xianjuan Shen ◽  
Shaoqing Ju

Exosomes are a group of nano-sized membrane vesicles and are important mediators of intercellular communication, particularly in tumor microenvironment. Recently, researchers have found that circular RNAs (circRNAs), with the great research significance, are enriched and stable in exosomes. In this review, we summarize the research significance of exosomal circRNAs, sorting mechanisms and their functioning mechanisms in tumor progression. Their clinical applications as clinical tumor biomarkers and as therapeutic targets in inhibiting tumor metastasis, anti-cancer immunity response and drug resistance have been widely discussed.


2021 ◽  
Vol 11 ◽  
Author(s):  
Erin E. Peterson ◽  
Kevin C. Barry

Natural killer (NK) cells and dendritic cells (DCs) are crucial mediators of productive immune responses to infection and disease. NK cells and a subtype of DCs, the type 1 conventional DCs (cDC1s), are individually important for regulating immune responses to cancer in mice and humans. Recent work has found that NK cells and cDC1s engage in intercellular cross-talk integral to initiating and coordinating adaptive immunity to cancer. This NK cell–cDC1 axis has been linked to increased overall survival and responses to anti-PD-1 immunotherapy in metastatic melanoma patients. Here, we review recent findings on the role of NK cells and cDC1s in protective immune responses to cancer and immunotherapy, as well as current therapies targeting this NK cell–cDC1 axis. Further, we explore the concept that intercellular cross-talk between NK cells and cDC1s may be key for many of the positive prognostic associations seen with NK cells and DCs individually. It is clear that increasing our understanding of the NK cell–cDC1 innate immune cell axis will be critical for the generation of novel therapies that can modulate anti-cancer immunity and increase patient responses to common immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document