scholarly journals Prostate Cancer—Focus on Cholesterol

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4696
Author(s):  
Lucija Škara ◽  
Ana Huđek Turković ◽  
Ivan Pezelj ◽  
Alen Vrtarić ◽  
Nino Sinčić ◽  
...  

Prostate cancer (PC) is the most common malignancy in men. Common characteristic involved in PC pathogenesis are disturbed lipid metabolism and abnormal cholesterol accumulation. Cholesterol can be further utilized for membrane or hormone synthesis while cholesterol biosynthesis intermediates are important for oncogene membrane anchoring, nucleotide synthesis and mitochondrial electron transport. Since cholesterol and its biosynthesis intermediates influence numerous cellular processes, in this review we have described cholesterol homeostasis in a normal cell. Additionally, we have illustrated how commonly deregulated signaling pathways in PC (PI3K/AKT/MTOR, MAPK, AR and p53) are linked with cholesterol homeostasis regulation.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1030-A1030
Author(s):  
Chung Seog Song ◽  
Bandana Chatterjee

Abstract Background: Liver X Receptors (LXRα, β) are oxysterol sensing nuclear receptors that regulate lipogenesis, cholesterol homeostasis and immune cell function. While oxysterols are agonist ligands of LXRs, sulfated oxysterols, catalytically produced by the SULT2B1b sulfotransferase, are LXR-inert. Increased SULT2B1b expression leads to attenuation of LXR signaling. In a previous report, we showed that SULT2B1b is undetectable in clinical samples of castration-resistant prostate cancer (CRPC), and its level is significantly reduced in a subset of primary prostate cancer. In cell models, genetic ablation of SULT2B1b exacerbated aggressive traits of CRPC, evident from EMT-like activation, enhanced invasion, faster xenograft tumor growth and reduced cell adhesiveness and stiffness in single-cell atomic force microscopy analysis. AKR1C3, which promotes androgen biosynthesis and shows elevated expression in advanced prostate cancer, is markedly upregulated in SULT2B-depleted cells. Elevated AKR1C3 leads to activation of the ERK1/2 Map kinase survival signal in CRPC cells. Results: We report here that AKR1C3 upregulation is a consequence of enhanced LXRα signaling in SULT2B1b-deficient cells, since the upregulation was abolished in multiple cell models when LXRα was silenced by siRNAs or inactivated by the small molecule inhibitor SR9243, which is an LXRs-selective inverse agonist. Conversely, LXR agonism induced by an oxysterol, or by the synthetic ligand GW3965, resulted in elevated AKR1C3 expression. Consistent with a recent report that the nuclear receptor ERRα is a positive regulator of AKR1C3, we found that ERRα ablation prevented AKR1C3 upregulation in SULT2B1b-deficient cells. Notably, LXRα inactivation caused marked reduction of ERRα, indicating that ERRα functions downstream of LXRα to induce AKR1C3 and ERK1/2. Dependence of ERRα and AKR1C3 expression on LXRα was observed in both androgen receptor (AR)-positive and AR-negative CRPC cells. Elevated ERRα in prostate cancer is known to be associated with a poor disease outcome. This association may be in part due to ERRα activation by cholesterol, which is the endogenous agonist ligand for ERRα (Cell Metab 23: 479, 2016), and high cholesterol is a risk factor for aggressive prostate cancer. Furthermore, statins, which inhibit cholesterol biosynthesis, are beneficial to CRPC patients with elevated blood cholesterol. We identified two cholesterol-responsive ERRα-binding sites in the far upstream region of the AKR1C3 promoter. This result confirms that ERRα plays a direct role in the transcriptional upregulation of AKR1C3. Significance: Our study establishes a novel LXRα→ERRα→AKR1C3→ERK1/2 survival axis that is activated in CRPC cells under SULT2B1b deficiency. The LXRα→ERRα regulatory axis may be exploited for developing novel therapeutics against AR-positive and AR-negative CRPC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peter Dornbos ◽  
Amanda Jurgelewicz ◽  
Kelly A. Fader ◽  
Kurt Williams ◽  
Timothy R. Zacharewski ◽  
...  

Abstract The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. The prototypical ligand of the AHR is an environmental contaminant called 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD exposure is associated with many adverse health outcomes in humans including non-alcoholic fatty liver disease (NAFLD). Previous studies suggest that AHR ligands alter cholesterol homeostasis in mice through repression of genes involved in cholesterol biosynthesis, such as Hmgcr, which encodes the rate-limiting enzyme of cholesterol biosynthesis called 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR). In this study, we sought to characterize the impact of HMGCR repression in TCDD-induced liver injury. C57BL/6 mice were exposed to TCDD in the presence or absence of simvastatin, a competitive inhibitor of HMGCR. Simvastatin exposure decreased TCDD-induced hepatic lipid accumulation in both sexes, but was most prominent in females. Simvastatin and TCDD (S + T) co-treatment increased hepatic AHR-battery gene expression and liver injury in male, but not female, mice. In addition, the S + T co-treatment led to an increase in hepatic glycogen content that coincides with heavier liver in female mice. Results from this study suggest that statins, which are amongst the most prescribed pharmaceuticals, may protect from AHR-mediated steatosis, but alter glycogen metabolism and increase the risk of TCDD-elicited liver damage in a sex-specific manner.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vijay R. Varma ◽  
H. Büşra Lüleci ◽  
Anup M. Oommen ◽  
Sudhir Varma ◽  
Chad T. Blackshear ◽  
...  

AbstractThe role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


2021 ◽  
Vol 11 (19) ◽  
pp. 9019
Author(s):  
Hanna Lewandowska ◽  
Karolina Wójciuk ◽  
Urszula Karczmarczyk

Nanomaterials with enzyme-like activity (nanozymes) have found applications in various fields of medicine, industry, and environmental protection. This review discusses the use of nanozymes in the regulation of cellular homeostasis. We also review the latest biomedical applications of nanozymes related to their use in cellular redox status modification and detection. We present how nanozymes enable biomedical advances and demonstrate basic design strategies to improve diagnostic and therapeutic efficacy in various diseases. Finally, we discuss the current challenges and future directions for developing nanozymes for applications in the regulation of the redox-dependent cellular processes and detection in the cellular redox state changes.


2020 ◽  
Vol 8 (A) ◽  
pp. 317-322
Author(s):  
Eka Yudha Rahman ◽  
Kusworini Kusworini ◽  
Mulyohadi Ali ◽  
Basuki Bambang Purnomo ◽  
Nia Kania

BACKGROUND: Prostate cancer is the second most common malignancy in men and has become the sixth leading cause of death in males worldwide. Eurycoma longifolia Jack root has active compounds, namely, quassinoids, eurycomanone, and canthine, which have potential as detoxicants, free radical antioxidants, and anticancer. AIM: This study aimed to analyze the potential of the active compounds in E. longifolia Jack root in induce apoptosis in the prostate adenocarcinoma PC-3 cells. METHODS: E. longifolia root active compounds were obtained by extracting them using ethanol solvent. The culture of prostate cancer PC-3 cell line was obtained from androgen-independent prostate adenocarcinoma with bone metastasis use as subject. Examination of the potency of E. longifolia root extract was conducted by observing the cells undergoing apoptosis with TUNEL assay. RESULTS: One-way ANOVA test showed that the increase in apoptotic cells was associated proportionally with the concentration levels of E. longifolia root extract and showed a significant difference (α < 0.05). CONCLUSION: The higher the dose of E. longifolia root extract, the higher will be the apoptotic level of adenocarcinoma cells PC3. E. longifolia extract is potentially used in the treatment of prostate cancer by inducing apoptotic mechanisms.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Atsushi Koizumi ◽  
Shintaro Narita ◽  
Hiroki Nakanishi ◽  
Masaki Ishikawa ◽  
Satoshi Eguchi ◽  
...  

Abstract Phosphoinositides (PIPs) participate in many cellular processes, including cancer progression; however, the metabolic features of PIPs associated with prostate cancer (PCa) are unknown. We investigated PIPs profiles in PTEN-deficient prostate cancer cell lines, human prostate tissues obtained from patients with PCa and benign prostate hyperplasia (BPH) specimens using mass spectrometry. In immortalized normal human prostate PNT1B cells, PTEN deficiency increased phosphatidylinositol tris-phosphate (PIP3) and decreased phosphatidylinositol mono- and bis-phosphate (PIP1 and PIP2), consistent with PTEN’s functional role as a PI(3,4,5)P3 3-phosphatase. In human prostate tissues, levels of total (sum of all acyl variants) phosphatidylinositol (PI) and PIP1 in PCa were significantly higher than in BPH, whereas PIP2 and PIP3 contents were significantly lower than in BPH. PCa patients had significantly higher proportion of PI, PIP1, and PIP2 with 0–2 double bonds in acyl chains than BPH patients. In subgroup analyses based on PCa aggressiveness, mean total levels of PI with 0–2 double bonds in acyl chains were significantly higher in patients with pathological stage T3 than in those with pathological stage T2. These data indicate that alteration of PIPs level and the saturation of acyl chains may be associated with the development and aggressiveness of prostate cancer, although it is unknown whether this alteration is causative.


2000 ◽  
Vol 46 ◽  
pp. 403-424
Author(s):  
Muhammad Akhtar

George Joseph Popják was a leading biochemist who introduced radioisotopic techniques to the study of metabolic pathways in the UK, and fully exploited their use in his own researches. His earlier work clarified the origin of triglycerides and cholesterol in the foetus as well as in milk, and paved the way for far-reaching discoveries in these fields. His group was the first to demonstrate that fatty acid biosynthesis occurs not in the mitochondria by the mere reversal of the β-oxidation pathway, but by a new cytosolic enzyme system. With J.W. Cornforth he dominated the field of cholesterol biosynthesis for nearly two decades. Their joint work reached new heights when they made intellectually cunning contributions to the mechanism and stereochemistry of several enzymic reactions involved between mevalonic acid and squalene. His later work was concerned with the understanding of the factors that, under physiological conditions, maintain cholesterol homeostasis and the development of novel strategies that can be used in the treatment of hypercholesterolaemia. Popják's early medical training and his great mastery of chemical enzymology provided a powerful combination for tackling biomedically important problems at a molecular level.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Demin Cai ◽  
Junjian Wang ◽  
Bei Gao ◽  
Jin Li ◽  
Feng Wu ◽  
...  

Abstract Tumor subtype-specific metabolic reprogrammers could serve as targets of therapeutic intervention. Here we show that triple-negative breast cancer (TNBC) exhibits a hyper-activated cholesterol-biosynthesis program that is strongly linked to nuclear receptor RORγ, compared to estrogen receptor-positive breast cancer. Genetic and pharmacological inhibition of RORγ reduces tumor cholesterol content and synthesis rate while preserving host cholesterol homeostasis. We demonstrate that RORγ functions as an essential activator of the entire cholesterol-biosynthesis program, dominating SREBP2 via its binding to cholesterol-biosynthesis genes and its facilitation of the recruitment of SREBP2. RORγ inhibition disrupts its association with SREBP2 and reduces chromatin acetylation at cholesterol-biosynthesis gene loci. RORγ antagonists cause tumor regression in patient-derived xenografts and immune-intact models. Their combination with cholesterol-lowering statins elicits superior anti-tumor synergy selectively in TNBC. Together, our study uncovers a master regulator of the cholesterol-biosynthesis program and an attractive target for TNBC.


2019 ◽  
Vol 18 (8) ◽  
pp. e3089
Author(s):  
C. Kalogirou ◽  
J. Linxweiler ◽  
M. Rosenfeldt ◽  
M. Puhr ◽  
H. Marouf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document