scholarly journals Phagocytic Glial Cells in Brain Homeostasis

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1348
Author(s):  
Rena Kono ◽  
Yuji Ikegaya ◽  
Ryuta Koyama

Phagocytosis by glial cells has been shown to play an important role in maintaining brain homeostasis. Microglia are currently considered to be the major phagocytes in the brain parenchyma, and these cells phagocytose a variety of materials, including dead cell debris, abnormally aggregated proteins, and, interestingly, the functional synapses of living neurons. The intracellular signaling mechanisms that regulate microglial phagocytosis have been studied extensively, and several important factors, including molecules known as “find me” signals and “eat me” signals and receptors on microglia that are involved in phagocytosis, have been identified. In addition, recent studies have revealed that astrocytes, which are another major glial cell in the brain parenchyma, also have phagocytic abilities. In this review, we will discuss the roles of microglia and astrocytes in phagocytosis-mediated brain homeostasis, focusing on the characteristics and differences of their phagocytic abilities.

2008 ◽  
pp. S101-S110
Author(s):  
A Chvátal ◽  
M Anděrová ◽  
H Neprašová ◽  
I Prajerová ◽  
J Benešová ◽  
...  

The pathological potential of glial cells was recognized already by Rudolf Virchow, Santiago Ramon y Cajal and Pio Del Rio-Ortega. Many functions and roles performed by astroglia in the healthy brain determine their involvement in brain diseases; as indeed any kind of brain insult does affect astrocytes, and their performance in pathological conditions, to a very large extent, determines the survival of the brain parenchyma, the degree of damage and neurological defect. Astrocytes being in general responsible for overall brain homeostasis are involved in virtually every form of brain pathology. Here we provide an overview of recent developments in identifying the role and mechanisms of the pathological potential of astroglia.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


Neurosurgery ◽  
2020 ◽  
Vol 87 (5) ◽  
pp. 1064-1069 ◽  
Author(s):  
Alin Borha ◽  
Audrey Chagnot ◽  
Romain Goulay ◽  
Evelyne Emery ◽  
Denis Vivien ◽  
...  

Abstract Background Solutes distribution by the intracranial cerebrospinal fluid (CSF) fluxes along perivascular spaces and through interstitial fluid (ISF) play a key role in the clearance of brain metabolites, with essential functions in maintaining brain homeostasis. Objective To investigate the impact of decompressive craniectomy (DC) and cranioplasty (CP) on the efficacy of solutes distribution by the intracranial CSF and ISF flux. Methods Mice were allocated in 3 groups: sham surgery, DC, and DC followed by CP. The solutes distribution in the brain parenchyma was assessed using T1 magnetic resonance imaging after injection of DOTA-Gadolinium in the cisterna magna. This evaluation was performed at an early time point following DC (after 2 d) and at a later time point (after 15 d). We evaluated the solutes distribution in the whole brain and in the region underneath the DC area. Results Our results demonstrate that the global solutes distribution in the brain parenchyma is impaired after DC in mice, both at early and late time-points. However, there was no impact of DC on the solutes distribution just under the craniectomy. We then provide evidence that this impairment was reversed by CP. Conclusion The solute distribution in the brain parenchyma by the CSF and ISF is impaired by DC, a phenomenon reversed by CP.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jasleen Kaur ◽  
Lara M. Fahmy ◽  
Esmaeil Davoodi-Bojd ◽  
Li Zhang ◽  
Guangliang Ding ◽  
...  

Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kevin Thomas Beier

Trans-neuronal viruses are frequently used as neuroanatomical tools for mapping neuronal circuits. Specifically, recombinant one-step rabies viruses (RABV) have been instrumental in the widespread application of viral circuit mapping, as these viruses have enabled labs to map the direct inputs onto defined cell populations. Within the neuroscience community, it is widely believed that RABV spreads directly between neurons via synaptic connections, a hypothesis based principally on two observations. First, the virus labels neurons in a pattern consistent with known anatomical connectivity. Second, few glial cells appear to be infected following RABV injections, despite the fact that glial cells are abundant in the brain. However, there is no direct evidence that RABV can actually be transmitted through synaptic connections. Here we review the immunosubversive mechanisms that are critical to RABV’s success for infiltration of the central nervous system (CNS). These include interfering with and ultimately killing migratory T cells while maintaining levels of interferon (IFN) signaling in the brain parenchyma. Finally, we critically evaluate studies that support or are against synaptically-restricted RABV transmission and the implications of viral-host immune responses for RABV transmission in the brain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rebecca M. Fleeman ◽  
Elizabeth A. Proctor

More than 6 million Americans are currently living with Alzheimer's disease (AD), and the incidence is growing rapidly with our aging population. Numerous therapeutics have failed to make it to the clinic, potentially due to a focus on presumptive pathogenic proteins instead of cell-type-specific signaling mechanisms. The tau propagation hypothesis that inter-neuronal tau transfer drives AD pathology has recently garnered attention, as accumulation of pathological tau in the brain has high clinical significance in correlating with progression of cognitive AD symptoms. However, studies on tau pathology in AD are classically neuron-centric and have greatly overlooked cell-type specific effects of tau internalization, degradation, and propagation. While the contribution of microglia to tau processing and propagation is beginning to be recognized and understood, astrocytes, glial cells in the brain important for maintaining neuronal metabolic, synaptic, trophic, and immune function which can produce, internalize, degrade, and propagate tau are understudied in their ability to affect AD progression through tau pathology. Here, we showcase evidence for whether tau uptake by astrocytes may be beneficial or detrimental to neuronal health and how astrocytes and their immunometabolic functions may be key targets for future successful AD therapies.


2021 ◽  
Vol 118 (42) ◽  
pp. e2106294118
Author(s):  
Pablo Izquierdo ◽  
Hiroko Shiina ◽  
Chanawee Hirunpattarasilp ◽  
Grace Gillis ◽  
David Attwell

Microglia are the resident immune cells of the central nervous system. They constantly survey the brain parenchyma for redundant synapses, debris, or dying cells, which they remove through phagocytosis. Microglial ramification, motility, and cytokine release are regulated by tonically active THIK-1 K+ channels on the microglial plasma membrane. Here, we examined whether these channels also play a role in phagocytosis. Using pharmacological blockers and THIK-1 knockout (KO) mice, we found that a lack of THIK-1 activity approximately halved both microglial phagocytosis and marker levels for the lysosomes that degrade phagocytically removed material. These changes may reflect a decrease of intracellular [Ca2+]i activity, which was observed when THIK-1 activity was reduced, since buffering [Ca2+]i reduced phagocytosis. Less phagocytosis is expected to result in impaired pruning of synapses. In the hippocampus, mice lacking THIK-1 expression had an increased number of anatomically and electrophysiologically defined glutamatergic synapses during development. This resulted from an increased number of presynaptic terminals, caused by impaired removal by THIK-1 KO microglia. The dependence of synapse number on THIK-1 K+ channels, which control microglial surveillance and phagocytic ability, implies that changes in the THIK-1 expression level in disease states may contribute to altering neural circuit function.


2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 134
Author(s):  
Stephanie Dooves ◽  
Arianne J. H. van Velthoven ◽  
Linda G. Suciati ◽  
Vivi M. Heine

Tuberous sclerosis complex (TSC) is a genetic disease affecting the brain. Neurological symptoms like epilepsy and neurodevelopmental issues cause a significant burden on patients. Both neurons and glial cells are affected by TSC mutations. Previous studies have shown changes in the excitation/inhibition balance (E/I balance) in TSC. Astrocytes are known to be important for neuronal development, and astrocytic dysfunction can cause changes in the E/I balance. We hypothesized that astrocytes affect the synaptic balance in TSC. TSC patient-derived stem cells were differentiated into astrocytes, which showed increased proliferation compared to control astrocytes. RNA sequencing revealed changes in gene expression, which were related to epidermal growth factor (EGF) signaling and enriched for genes that coded for secreted or transmembrane proteins. Control neurons were cultured in astrocyte-conditioned medium (ACM) of TSC and control astrocytes. After culture in TSC ACM, neurons showed an altered synaptic balance, with an increase in the percentage of VGAT+ synapses. These findings were confirmed in organoids, presenting a spontaneous 3D organization of neurons and glial cells. To conclude, this study shows that TSC astrocytes are affected and secrete factors that alter the synaptic balance. As an altered E/I balance may underlie many of the neurological TSC symptoms, astrocytes may provide new therapeutic targets.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alice Buonfiglioli ◽  
Dolores Hambardzumyan

AbstractGlioblastoma (GBM) is the most aggressive and deadliest of the primary brain tumors, characterized by malignant growth, invasion into the brain parenchyma, and resistance to therapy. GBM is a heterogeneous disease characterized by high degrees of both inter- and intra-tumor heterogeneity. Another layer of complexity arises from the unique brain microenvironment in which GBM develops and grows. The GBM microenvironment consists of neoplastic and non-neoplastic cells. The most abundant non-neoplastic cells are those of the innate immune system, called tumor-associated macrophages (TAMs). TAMs constitute up to 40% of the tumor mass and consist of both brain-resident microglia and bone marrow-derived myeloid cells from the periphery. Although genetically stable, TAMs can change their expression profiles based upon the signals that they receive from tumor cells; therefore, heterogeneity in GBM creates heterogeneity in TAMs. By interacting with tumor cells and with the other non-neoplastic cells in the tumor microenvironment, TAMs promote tumor progression. Here, we review the origin, heterogeneity, and functional roles of TAMs. In addition, we discuss the prospects of therapeutically targeting TAMs alone or in combination with standard or newly-emerging GBM targeting therapies.


Sign in / Sign up

Export Citation Format

Share Document