scholarly journals Alterations in Dendritic Spine Maturation and Neurite Development Mediated by FAM19A1

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1868
Author(s):  
Hyo-Jeong Yong ◽  
Jong-Ik Hwang ◽  
Jae-Young Seong

Neurogenesis and functional brain activity require complex associations of inherently programmed secretory elements that are regulated precisely and temporally. Family with sequence similarity 19 A1 (FAM19A1) is a secreted protein primarily expressed in subsets of terminally differentiated neuronal precursor cells and fully mature neurons in specific brain substructures. Several recent studies have demonstrated the importance of FAM19A1 in brain physiology; however, additional information is needed to support its role in neuronal maturation and function. In this study, dendritic spine morphology in Fam19a1-ablated mice and neurite development during in vitro neurogenesis were examined to understand the putative role of FAM19A1 in neural integrity. Adult Fam19a1-deficient mice showed low dendritic spine density and maturity with reduced dendrite complexity compared to wild-type (WT) littermates. To further explore the effect of FAM19A1 on neuronal maturation, the neurite outgrowth pattern in primary neurons was analyzed in vitro with and without FAM19A1. In response to FAM19A1, WT primary neurons showed reduced neurite complexity, whereas Fam19a1-decifient primary neurons exhibited increased neurite arborization, which was reversed by supplementation with recombinant FAM19A1. Together, these findings suggest that FAM19A1 participates in dendritic spine development and neurite arborization.

Author(s):  
Stephanie K. Jones ◽  
Jennifer Rha ◽  
Sarah Kim ◽  
Kevin J. Morris ◽  
Omotola F. Omotade ◽  
...  

AbstractZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), an evolutionarily conserved member of a class of tandem zinc finger (CCCH) polyadenosine (polyA) RNA binding proteins, is associated with a form of heritable, nonsyndromic autosomal recessive intellectual disability. Previous studies of a loss of function mouse model, Zc3h14Δex13/Δex13, provide evidence that ZC3H14 is essential for proper brain function, specifically for working memory. To expand on these findings, we analyzed the dendrites and dendritic spines of hippocampal neurons from Zc3h14Δex13/Δex13 mice, both in situ and in vitro. These studies reveal that loss of ZC3H14 is associated with a decrease in total spine density in hippocampal neurons in vitro as well as in the dentate gyrus of 5-month old mice analyzed in situ. This reduction in spine density in vitro results from a decrease in the number of mushroom-shaped spines, which is rescued by exogenous expression of ZC3H14. We next performed biochemical analyses of synaptosomes prepared from whole wild-type and Zc3h14Δex13/Δex13 mouse brains to determine if there are changes in steady state levels of postsynaptic proteins upon loss of ZC3H14. We found that ZC3H14 is present within synaptosomes and that a crucial postsynaptic protein, CaMKIIα, is significantly increased in these synaptosomal fractions upon loss of ZC3H14. Together, these results demonstrate that ZC3H14 is necessary for proper dendritic spine density in cultured hippocampal neurons and in some regions of the mouse brain. These findings provide insight into how a ubiquitously expressed RNA binding protein leads to neuronal-specific defects that result in brain dysfunction.


Author(s):  
Juan C. Sanchez-Arias ◽  
Rebecca C. Candlish ◽  
Leigh Anne Swayne

AbstractThe integration of neurons into networks relies on the formation of dendritic spines. These specialized structures arise from dynamic filopodia-like spiny protrusions. Recently, it was discovered that cortical neurons lacking the channel protein Pannexin 1 (Panx1) exhibited larger and more complicated neuronal networks, as well as, higher dendritic spine densities. Here, we expanded on those findings to investigate whether the increase in dendritic spine density associated with lack of Panx1 was due to differences in the rates of spine dynamics. Using a fluorescent membrane tag (mCherry-CD9-10) to visualize spiny protrusions in developing neurons (at 10 days-in-vitro, DIV10) we confirmed that lack of Panx1 leads to higher spiny protrusion density while transient transfection of Panx1 leads to decreased spiny protrusion density. To quantify the impact of Panx1 expression on spiny protrusion formation, elimination, and motility, we used live cell imaging in DIV10 neurons (1 frame every 5 seconds for 10 minutes). We discovered, that at DIV10, lack of Panx1 KO stabilized spiny protrusions. Notably, re-expression of Panx1 in Panx1 knockout neurons resulted in a significant increase in spiny protrusion motility and turnover. In summary, these new data revealed that Panx1 regulates the development of dendritic spines by controlling protrusion dynamics.Significance statementCells in the brain form intricate and specialized networks - neuronal networks - in charge of processing sensations, executing movement commands, and storing memories. To do this, brain cells extend microscopic protrusions - spiny protrusions - which are highly dynamic and survey the local environment to contact other cells. Those contact sites are known as synapses and undergo further stabilization and maturation establishing the function and efficiency of neuronal networks. Our work shows that removal of Panx1 increases the stability and decreases the turnover of spiny protrusion on young neurons.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1655
Author(s):  
Kyung-Min Han ◽  
Ri Jin Kang ◽  
Hyongjun Jeon ◽  
Hyun-ju Lee ◽  
Ji-Soo Lee ◽  
...  

The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer’s disease (AD) pathology has not been carefully addressed. Here, we report the regulatory function of regorafenib in neuroinflammatory responses and AD-related pathology in vitro and in vivo. Regorafenib affected AKT signaling to attenuate lipopolysaccharide (LPS)-mediated expression of proinflammatory cytokines in BV2 microglial cells and primary cultured microglia and astrocytes. In addition, regorafenib suppressed LPS-induced neuroinflammatory responses in LPS-injected wild-type mice. In 5x FAD mice (a mouse model of AD), regorafenib ameliorated AD pathology, as evidenced by increased dendritic spine density and decreased Aβ plaque levels, by modulating APP processing and APP processing-associated proteins. Furthermore, regorafenib-injected 5x FAD mice displayed significantly reduced tau phosphorylation at T212 and S214 (AT100) due to the downregulation of glycogen synthase kinase-3 beta (GSK3β) activity. Taken together, our results indicate that regorafenib has beneficial effects on neuroinflammation, AD pathology, and dendritic spine formation in vitro and in vivo.


1997 ◽  
Vol 77 (3) ◽  
pp. 1614-1623 ◽  
Author(s):  
Carlos Collin ◽  
Katsuyuki Miyaguchi ◽  
Menahem Segal

Collin, Carlos, Katsuyuki Miyaguchi, and Menahem Segal.Dendritic spine density and LTP induction in cultured hippocampal slices. J. Neurophysiol. 77: 1614–1623, 1997. Transverse hippocampal slices were cut from 8- to 9-day-old rats and maintained in an interface chamber for periods of 1–4 wk, in tissue culture conditions. Neurons in the slice preserved their spatial organization and connectivity. Dendritic spine density in CA1 neurons was very low at 1 wk in culture, and long, filopodia-like structures were abundant. Spine density increased in these neurons nearly threefold during the course of 3 wk in vitro, to approach values of those of the normal, in vivo hippocampus. The magnitude of long-term potentiation (LTP) of reactivity of CA1 to stimulation of CA3 neurons also increased during weeks in culture in parallel with the change in spine density. Chronic exposure of slices to drugs that interact with synaptic activity caused changes in their dendritic spine density. Blockade of the N-methyl-d-aspartate (NMDA) receptors with the receptor antagonist 2-aminophosphonovalerate (d-APV) or blockade of action potential discharges with tetrodotoxin (TTX) prevented dendritic spine development in immature cultures. Enhancing synaptic activity by blockade of GABAergic inhibition with picrotoxin did not affect spine density to a significant degree. d-APV-treated slices expressed larger LTP than controls. TTX-treated slices expressed smaller LTP than controls. Picrotoxin treated slices did not express LTP. It is proposed that LTP and dendritic spine density are correlated strongly during development, whereas they are not correlated in the more mature slice/culture of the hippocampus where spine density can be modulated by chronic exposure to blockers of synaptic activity, which will not affect LTP in a similar manner.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii126-ii126
Author(s):  
Naomi Lomeli ◽  
Kaijun Di ◽  
Daniela Bota

Abstract OBJECTIVES Chemotherapy-related cognitive impairment (CRCI) is an adverse sequela of cancer treatment commonly reported in cancer survivors. Cisplatin is used for the treatment of various malignancies including ovarian, testicular, head and neck cancers, and pediatric brain tumors. More than 30% of advanced ovarian cancer patients develop CRCI during and after platinum-based chemotherapy. We examined the role of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) activation in cisplatin-induced CRCI, and whether the small molecule p38 MAPK inhibitor Neflamapimod and JNK inhibitor SP600125, can prevent cisplatin-induced neuronal damage. The p38 and JNK MAPK signaling pathways are involved in various stress response pathways in the CNS including oxidative stress. METHODS The effect of cisplatin on cognition in an ovarian cancer female rat model was assessed by novel object recognition (NOR). Hippocampal glutathione levels were measured post-behavioral testing. P38 and JNK MAPK signaling activation were assessed in the neural cell lines PC12 and SH-SY5Y by Western blot. Cultured hippocampal neurons were pretreated with Neflamapimod or SP600125 followed by cisplatin for 24 hours, and dendritic spine density and branch length were quantified. RESULTS Cisplatin increased phospho-p38 and phospho-JNK MAPK protein levels in PC12 and SH-SY5Y cells. Cisplatin reduced dendritic branching and spine density, which was prevented by Neflamapimod and SP600125 pre-treatment in hippocampal neurons, in vitro. Chronic cisplatin treatment decreased hippocampal glutathione levels and impaired cognitive function in the ovarian cancer rat model. DISCUSSION The cognitive deficits caused by cisplatin results in part from dendritic damage and neural apoptosis, which is mediated by oxidative stress and the p38 and JNK MAPK pathways. P38 and JNK MAPK inhibition mitigated cisplatin-induced dendritic spine loss and branching in vitro. Next, we will examine whether Neflamapimod and SP600125 administration in an ovarian cancer rat model is safe and if they can prevent cognitive impairment.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1507-1520 ◽  
Author(s):  
A Meléndez ◽  
W Li ◽  
D Kalderon

Abstract The DC2 gene was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development.


Sign in / Sign up

Export Citation Format

Share Document