scholarly journals Omega-3 Fatty Acids DHA and EPA Reduce Bortezomib Resistance in Multiple Myeloma Cells by Promoting Glutathione Degradation

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2287
Author(s):  
Jing Chen ◽  
Esther A. Zaal ◽  
Celia R. Berkers ◽  
Rob Ruijtenbeek ◽  
Johan Garssen ◽  
...  

Multiple myeloma (MM) is a hematological malignancy that exhibits aberrantly high levels of proteasome activity. While treatment with the proteasome inhibitor bortezomib substantially increases overall survival of MM patients, acquired drug resistance remains the main challenge for MM treatment. Using a combination treatment of docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) and bortezomib, it was demonstrated previously that pretreatment with DHA/EPA significantly increased bortezomib chemosensitivity in MM cells. In the current study, both transcriptome and metabolome analysis were performed to comprehensively evaluate the underlying mechanism. It was demonstrated that pretreating MM cells with DHA/EPA before bortezomib potently decreased the cellular glutathione (GSH) level and altered the expression of the related metabolites and key enzymes in GSH metabolism, whereas simultaneous treatment only showed minor effects on these factors, thereby suggesting the critical role of GSH degradation in overcoming bortezomib resistance in MM cells. Moreover, RNA-seq results revealed that the nuclear factor erythroid 2-related factor 2 (NRF2)-activating transcription factor 3/4 (ATF3/4)-ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1) signaling pathway may be implicated as the central player in the GSH degradation. Pathways of necroptosis, ferroptosis, p53, NRF2, ATF4, WNT, MAPK, NF-κB, EGFR, and ERK may be connected to the tumor suppressive effect caused by pretreatment of DHA/EPA prior to bortezomib. Collectively, this work implicates GSH degradation as a potential therapeutic target in MM and provides novel mechanistic insights into its significant role in combating bortezomib resistance.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Jiang ◽  
Zhen Zhou ◽  
Qing-tao Meng ◽  
Qian Sun ◽  
Wating Su ◽  
...  

Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway.Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R.Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-)αbut decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-αand MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA.Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway.


2021 ◽  
pp. 153537022110230
Author(s):  
Zhichang Pan ◽  
Yu Zhang ◽  
Chuanyong Li ◽  
Yuan Yin ◽  
Rui Liu ◽  
...  

Deep venous thrombosis is one of the most common venous thromboembolic diseases and has a low cure rate and a high postoperative recurrence rate. Furthermore, emerging evidence indicates that microRNAs are involved in deep venous thrombosis. miR-296-5p is an important microRNA that plays a critical role in various cellular functions, and S100A4 is closely related to vascular function. miR-296-5p is downregulated in deep venous thrombosis patients, and its predicted target S100A4 is upregulated in deep venous thrombosis patients. Therefore, it was hypothesized that miR-296-5p may play a vital role in the development of deep venous thrombosis by targeting S100A4. An Ox-LDL-stimulated HUVEC and deep venous thrombosis mouse model was employed to detect the biological functions of miR-296-5p and S100A4. Dual luciferase reporter assays and pull-down assays were used to authenticate the interaction between miR-296-5p and S100A4. ELISA and Western blotting were employed to detect the protein levels of thrombosis-related factors and the endothelial-to-mesenchymal transition (EndMT)-related factors. The miR-296-5p levels were reduced, while the S100A4 levels were enhanced in deep venous thrombosis patients, and the miR-296-5p levels were negatively correlated with the S100A4 levels in deep venous thrombosis patients. miR-296-5p suppressed S100A4 expression by targeting the 3ʹ UTR of S100A4. MiR-296-5p knockdown accelerated ox-LDL-induced HUVEC apoptosis, oxidative stress, thrombosis-related factor expression, and EndMT, while S100A4 knockdown antagonized these effects in ox-LDL-induced HUVECs. S100A4 knockdown reversed the effect induced by miR-296-5p knockdown. Moreover, the in vivo studies revealed that miR-296-5p knockdown in deep venous thrombosis mice exacerbated deep venous thrombosis formation, whereas S100A4 knockdown had the opposite effect. These results indicate that elevated miR-296-5p inhibits deep venous thrombosis formation by inhibiting S100A4 expression. Both miR-296-5p and S100A4 may be potential diagnostic markers and therapeutic targets for deep venous thrombosis.


2019 ◽  
Author(s):  
Suchita Singh ◽  
Rakesh Arya ◽  
Rhishikesh R Bargaje ◽  
Mrinal Kumar Das ◽  
Subia Akram ◽  
...  

AbstractA diet derived agent Curcumin (Diferuloylmethane), demonstrated its clinical application in inflammation, infection and cancer conditions. Nevertheless, its impact on the proteome of epithelial cells of non-small cell lung carcinoma (NSCLC) is yet to be explored. We employed a stable isotope labeling method for cell culture (SILAC) based relative quantitative proteomics and informatics analysis to comprehend global proteome change in A549 cells treated with curcumin and/or Lipopolysaccharide (LPS). Pretreated A549 cells were infected with Mycobacterium tuberculosis H37Rv strain to monitor bacterial load. With exposure to curcumin and LPS, out of the 1492 identified proteins, 305 and 346 proteins showed deregulation respectively. The expression of BID and AIFM1 mitochondrial proteins which play critical role in apoptotic pathway were deregulated in curcumin treated cells. Higher mitochondria intensity was observed in curcumin treated A549 cells than LPS treatment. Simultaneous treatment of curcumin and LPS neutralized the effect of LPS. Curcumin and/or LPS pretreated A549 cells infected with H37Rv, showed successful bacterial internalization. LPS treated A549 cells after infection showed increased bacterial load than curcumin compared to non-treated infected cells. However, simultaneous treatment of curcumin and LPS neutralized the effect of LPS. This study generated molecular evidence to deepen our understanding of the anti-inflammatory role of curcumin and may be useful to identify molecular targets for drug discovery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Siqi Ming ◽  
Mei Zhang ◽  
Zibin Liang ◽  
Chunna Li ◽  
Jianzhong He ◽  
...  

Mucosal associated invariant T (MAIT) cells play a critical role in Helicobacter pylori (H. pylori)-induced gastritis by promoting mucosal inflammation and aggravating mucosal injuries (1, 2). However, the underlying mechanism and key molecules involved are still uncertain. Here we identified OX40, a co-stimulatory molecule mainly expressed on T cells, as a critical regulator to promote proliferation and IL-9 production by MAIT cells and facilitate mucosal inflammation in H. pylori-positive gastritis patients. Serum examination revealed an increased level of IL-9 in gastritis patients. Meanwhile, OX40 expression was increased in mucosal MAIT cells, and its ligand OX40L was also up-regulated in mucosal dendritic cells (DCs) of gastritis patients, compared with healthy controls. Further results demonstrated that activation of the OX40/OX40L pathway promoted IL-9 production by MAIT cells, and MAIT cells displayed a highly-activated phenotype after the cross-linking of OX40 and OX40L. Moreover, the level of IL-9 produced by MAIT cells was positively correlated with inflammatory indexes in the gastric mucosa, suggesting the potential role of IL-9-producing MAIT cells in mucosal inflammation. Taken together, we elucidated that OX40/OX40L axis promoted mucosal MAIT cell proliferation and IL-9 production in H. pylori-induced gastritis, which may provide potential targeting strategies for gastritis treatment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4474-4474
Author(s):  
Subodh Kumar ◽  
Leutz Buon ◽  
Srikanth Talluri ◽  
Jialan Shi ◽  
Hervé Avet-Loiseau ◽  
...  

Abstract As in all cancers, genomic instability leads to ongoing acquisition of new genetic changes in multiple myeloma (MM). This adaptability underlies the development of drug resistance and progression in MM. This genomic instability is driven by cellular processes, mainly related with DNA repair and perturbed by functional changes in limited number of genes. Since kinases play a critical role in the regulation of biological processes, including DNA damage/repair signaling and are relatively easy to screen for inhibitors, we investigated for novel genes involved in the acquisition of new genomic changes in MM. Using a large genomic database which had both the gene expression and CGH array-based copy number information (gse26863, n=246), we first identified a total of 890 expressed kinases in MM and correlated their expression with genomic instability defined as a change in ≥3 and/or 5 consecutive amplification and/or deletion events. We identified 198 kinases whose elevated expression correlated with increased genomic instability (based on FDR ≤ 0.05). Amongst these kinases, using univariate Cox survival analysis, elevated expression of 15 kinases correlated with poor overall as well as event free survival (P ≤0.05) in two MM datasets (IFM70, n=170; gse24080; n=559). We further confirmed the correlation of these 15 genes in both EFS and OS in additional two MM datasets (MMRF CoMMpass Study, IFM-DFCI 2009) as well as in additional solid tumor datasets from TCGA from patients with lung and pancreatic adenocarcinoma (P values ranging from 0.01 to <0.000002). A pathway analysis identified phosphorylation and regulation of proteasome pathway, mitotic spindle assembly/checkpoint, chromosomal segregation and cell cycle checkpoints as among major pathways regulated by these genes. To investigate the relevance of these genes with genomic instability, we performed a functional siRNA screen to evaluate impact of their suppression on homologous recombination (HR). PDZ Binding Kinase (PBK) was one of the top genes whose knockdown caused the maximal inhibition of HR activity in initial screen. To investigate it further in detail, we suppressed PBK in MM cells using shRNA and confirmed that its suppression significantly reduces HR activity. PBK-knockdown also reduced gH2AX levels (marker of DNA breaks) measured by Western blotting and decreased number of micronuclei (a marker of ongoing genomic rearrangements and instability) as assessed by flow cytometry . A small molecule inhibitor of PBK also confirmed a similar reduction in gH2AX levels as well as micronuclei, indicating inhibition of spontaneous DNA breaks and genomic instability. Using mass spectrometry and co-immunoprecipitation, we identified that PBK interacts with FEN1, a nuclease with roles in base excision repair and HR pathways. We confirmed that PBK induces phosphorylation of FEN1 and that inhibition of PBK, suppressed the phosphorylation of FEN1, RAD51 expression and gH2AX levels and it reversed FEN1-induced HR activity. These results confirm that phosphorylation of FEN1 nuclease by PBK contributes to its ability to impact DNA breaks, HR and genome stability in MM. PBK inhibition also significantly sensitized MM cells to melphalan and inhibited cell viability in a panel of MM cell lines (IC50 in MM cell lines ~20-30 nM vs ~100 nM in normal PBMCs) at the same time also reversed melphalan-induced genomic instability, as assessed by micronucleus assay. These data identify PBK as an important target affecting genomic instability, and its inhibitor as a potential drug, to inhibit genomic evolution and MM cell growth. Disclosures Munshi: OncoPep: Other: Board of director.


2021 ◽  
Author(s):  
Zhiqiang Liu ◽  
Xin Li ◽  
Sheng Wang ◽  
Ying Xie ◽  
Hongmei Jiang ◽  
...  

Abstract Acquired chemoresistance to proteasome inhibitors (PIs) is a major obstacle that results in failure to manage patients with multiple myeloma (MM) in the clinic; however, the key regulators and underlying mechanisms are still unclear. In this study, we found that high levels of a chromosomal modifier, heterochromatin protein 1 gamma (HP1γ), are accompanied by a low acetylation level in bortezomib-resistant (BR) MM cells, and aberrant DNA repair capacity is correlated with HP1γ overexpression. Mechanistically, the deacetylation of HP1γ at lysine 5 by histone deacetylase 1 (HDAC1) alleviates HP1γ ubiquitination, and the stabilized HP1γ recruits the mediator of DNA damage checkpoint 1 (MDC1) to induce DNA damage repair. Simultaneously, deacetylation modification and MDC1 recruitment enhance the nuclear condensate of HP1γ, which facilitates the chromatin accessibility of genes governing sensitivity to PIs, such as FOS, JUN and CD40. Thus, targeting HP1γ stability using the HDAC1/2 inhibitor, romidepsin, sensitizes PIs treatment and overcomes drug resistance both in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in the acquired drug resistance of MM and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in MM patients.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  

Purpose The authors wanted to find out the most important mechanisms for encouraging innovative behavior in the Indian manufacturing sector. Design/methodology/approach The researchers collected data from Indian manufacturing organizations. They distributed questionnaires and received 288 complete ones. Items measured critical concepts. For OJ one example was “I have been fairly rewarded for the effort I put forth”. For KS, one sample was, “When I have learned something new, I tell my colleagues about it” and, “When they have learned something new, my colleagues tell me about it”. Meanwhile, IB was measured using items such as “I generate original solutions for problems”. Findings It highlighted the pivotal role of OJ in bolstering employees’ IB. When companies treat employees fairly, it encourages positive social interactions that lead to perceptions of supportiveness and trustworthiness. Employees reciprocate these sentiments with positive behavior. The study also showed the positive predictive influence of KS on IB. Finally, the results showed that the relationship between OJ and IB is complex, but KS is a pivotal mediator. Promotion of OJ, KS and IM is “vital” to spark innovation. Originality/value The authors felt their most important finding was to highlight the critical role of the underlying mechanism of KS, which is where individuals exchange implicit and explicit knowledge to create new knowledge. In addition, previous researchers have looked at the role of organizational justice in encouraging innovative behavior, but evidence from non-Western countries is scarce.


2021 ◽  
Author(s):  
Jing Nie ◽  
Yoshitomo Ueda ◽  
Alexander Solivais ◽  
Eri Hashino

Abstract Mutations in the chromatin remodeling enzyme CHD7 cause CHARGE syndrome, which affects multiple organs including the inner ear. We investigated how CHD7 mutations affect otic development in human inner ear organoids. We found loss of CHD7 or its chromatin remodeling activity leads to complete absence of hair cells and supporting cells, which can be explained by dysregulation of key otic development-associated genes in mutant otic progenitors. Further analysis of the mutant otic progenitors suggested that CHD7 can regulate otic genes through a chromatin remodeling-independent mechanism. Results from transcriptome profiling of hair cells revealed disruption of deafness gene expression as a potential underlying mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-differentiating CHD7 knockout and wild-type cells in chimeric organoids partially rescued mutant phenotypes by restoring otherwise severely dysregulated otic genes. Taken together, our results suggest that CHD7 plays a critical role in regulating human otic lineage differentiation and deafness gene expression.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 837 ◽  
Author(s):  
Jeong Hwan Oh ◽  
Taek-Jeong Nam ◽  
Youn Hee Choi

Aging-induced cognitive dysfunction can be regulated by probiotics through bidirectional communication with the brain. This study aimed to investigate whether Capsosiphon fulvescens glycoproteins (Cf-hGP) enhanced probiotic-induced improvement of memory in aged rats and the underlying mechanism in the dorsal hippocampus. Cf-hGP were isolated using lectin resin. Cf-hGP (15 mg/kg/day) and/or Lactobacillus plantarum (L. plantarum) (109 CFU/rat/day) were orally administered once a day for 4 weeks. Co-treatment with Cf-hGP and L. plantarum synergistically improved spatial memory in aged rats, which was overturned by functional blocks of brain-derived neurotrophic factor (BDNF) signaling. Increases in BDNF expression and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation were accompanied by mono- and/or co-administration in the dorsal hippocampus, while c-Jun N-terminal kinase (JNK) phosphorylation and glucose-regulated protein 78 expression were decreased. These synergistic effects were downregulated by blocks of BDNF/Nrf2-mediated signaling. In particular, co-treatment, not mono-treatment, reduced phosphorylation of eukaryotic elongation factor 2 (eEF2) regulated by eEF2 kinase and protein phosphatase 2A. Additionally, co-treatment downregulated the interaction between eEF2 kinase and JNK. These data demonstrated that cognitive impairment in aged rats was synergistically diminished by co-treatment with Cf-hGP and L. plantarum through BDNF-mediated regulation of Nrf2 and eEF2 signaling pathways in the dorsal hippocampus.


Sign in / Sign up

Export Citation Format

Share Document