scholarly journals The Role of Tumor-Derived Exosomes (TEX) in Shaping Anti-Tumor Immune Competence

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3054
Author(s):  
Theresa L. Whiteside

Emerging studies suggest that extracellular vesicles (EVs) mediating intercellular communication in the tumor microenvironment (TME) play a key role in driving cancer progression. Tumor-derived small EVs or exosomes (TEX) enriched in immunosuppressive proteins or in microRNAs targeting suppressive pathways in recipient cells contribute to reprogramming the TME into a cancer-promoting milieu. The adenosinergic pathway is an acknowledged major contributor to tumor-induced immune suppression. TEX carry the components of this pathway and utilize ATP to produce adenosine (ADO). TEX-associated ADO emerges as a key factor in the suppression of T cell responses to therapy. Here, the significance of the ADO pathway in TEX is discussed as a highly effective mechanism of cancer-driven immune cell suppression and of resistance to immune therapies.

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5885
Author(s):  
Yu-Kuan Huang ◽  
Rita A. Busuttil ◽  
Alex Boussioutas

Metastasis is considered one of the hallmarks of cancer and enhanced tumor invasion and metastasis is significantly associated with cancer mortality. Metastasis occurs via a series of integrated processes involving tumor cells and the tumor microenvironment. The innate immune components of the microenvironment have been shown to engage with tumor cells and not only regulate their proliferation and survival, but also modulate the surrounding environment to enable cancer progression. In the era of immune therapies, it is critical to understand how different innate immune cell populations are involved in this process. This review summarizes recent literature describing the roles of innate immune cells during the tumor metastatic cascade.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1346
Author(s):  
Priya Veluswamy ◽  
Max Wacker ◽  
Dimitrios Stavridis ◽  
Thomas Reichel ◽  
Hendrik Schmidt ◽  
...  

The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.


2020 ◽  
Vol 21 (15) ◽  
pp. 5186 ◽  
Author(s):  
Suguru Kadomoto ◽  
Kouji Izumi ◽  
Atsushi Mizokami

Chemokines, which are basic proteins that exert their effects via G protein-coupled receptors and a subset of the cytokine family, are mediators deeply involved in leukocyte migration during an inflammatory reaction. Chemokine (C-C motif) ligand 20 (CCL20), also known as macrophage inflammatory protein (MIP)-3α, liver activation regulated chemokine (LARC), and Exodus-1, is a small protein that is physiologically expressed in the liver, colon, and skin, is involved in tissue inflammation and homeostasis, and has a specific receptor C-C chemokine receptor 6 (CCR6). The CCL20-CCR6 axis has long been known to be involved in inflammatory and infectious diseases, such as rheumatoid arthritis and human immunodeficiency virus infections. Recently, however, reports have shown that the CCL20-CCR6 axis is associated with several cancers, including hepatocellular carcinoma, colorectal cancer, breast cancer, pancreatic cancer, cervical cancer, and kidney cancer. The CCL20-CCR6 axis promotes cancer progression directly by enhancing migration and proliferation of cancer cells and indirectly by remodeling the tumor microenvironment through immune cell control. The present article reviewed the role of the CCL20-CCR6 axis in cancer progression and its potential as a therapeutic target.


Author(s):  
Daniel Crean ◽  
Evelyn P. Murphy

The NR4A1–NR4A3 (Nur77, Nurr1, and Nor-1) subfamily of nuclear receptors is a group of immediate early genes induced by a pleiotropy of stimuli including peptide hormones, growth factors, cytokines, inflammatory, and physiological stimuli, and cellular stress. NR4A receptors function as potent sensors of changes in the cellular microenvironment to control physiological and pathological processes through genomic and non-genomic actions. NR4A receptors control metabolism and cardiovascular and neurological functions and mediate immune cell homeostasis in inflammation and cancer. This receptor subfamily is increasingly recognized as an important molecular connection between chronic inflammation, altered immune cell responses, and cancer development. In this review, we examine how transcriptome analysis identified NR4A1/NR4A2 receptors as transcriptional regulators in mesenchymal stromal cell (MSC) migration, cell cycle progression, and cytokine production to control local immune responses. In chronic inflammatory conditions, such as rheumatoid arthritis, NR4A receptors have been shown to modify the activity of MSC and fibroblast-like stromal cells to regulate synovial tissue hyperplasia, pathological angiogenesis, and cartilage turnover in vivo. Additionally, as NR4A1 has been observed as a major transcriptional regulator in tumor–stromal communication controlling tumorigenesis, we discuss how advances in the pharmacological control of these receptors lead to important new mechanistic insights into understanding the role of the tumor microenvironment in health and disease.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kamila J. Bienkowska ◽  
Christopher J. Hanley ◽  
Gareth J. Thomas

The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an “activated” myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other “hallmarks of malignancy.” CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.


2021 ◽  
Author(s):  
Jordan J. Baechle ◽  
David N. Hanna ◽  
Sekhar R. Konjeti ◽  
Jeffrey C. Rathmell ◽  
W. Kimryn Rathmell ◽  
...  

AbstractAdrenocortical carcinoma (ACC) is a rare but highly aggressive malignancy and nearly half of ACC tumors have been shown to overproduce and secrete adrenal steroids. Excess cortisol secretion, in particular, has been associated with poor prognosis among ACC patients. Furthermore, recent immunotherapy clinical trials demonstrated significant immunoresistance among cortisol-secreting ACC (CS-ACC) patients when compared to their non-Cortisol-secreting (nonCS-ACC) counterparts. The immunosuppressive role of excess glucocorticoid therapies and secretion is well established, however, the impact of the cortisol hypersecretion on ACC tumor microenvironment (TME), immune expression profiles, and immune cell responses remain largely undefined. In this study, we characterized the TME of ACC patients and compared the immunogenomic profiles of nonCS-ACC and CS-ACC tumors to assess the impact of differentially expressed genes (DEGs) related to immune processes on patient prognosis. Comprehensive multiplatform immunogenomic computational analyses of ACC tumors deciphered an immunosuppressive expression profile with a direct impact on patient survival. We identified several primary immunogenomic prognostic indicators and potential targets within the tumor immune landscape of CS-ACC that define a distinct TME and provide additional insight into the understanding of potential contributory mechanisms underlying failure of initial immunotherapeutic trials and poor prognosis of patients with CS-ACC.


Author(s):  
Francesco Di Virgilio

AbstractThe tumor microenvironment is rich in extracellular ATP. This nucleotide affects both cancer and infiltrating immune cell responses by acting at P2 receptors, chiefly P2X7. ATP is then degraded to generate adenosine, a very powerful immunosuppressant. The purinergic hypothesis put forward by Geoff Burnstock prompted innovative investigation in this field and provided the intellectual framework to interpret a myriad of experimental findings. This is a short appraisal of how Geoff’s inspiration influenced cancer studies and my own investigation highlighting the key role of the P2X7 receptor.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2794-2794
Author(s):  
Els Van Valckenborgh ◽  
Jo Van Ginderachter ◽  
Kiavash Movahedi ◽  
Eline Menu ◽  
Karin Vanderkerken

Abstract Abstract 2794 Poster Board II-770 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous mix of myeloid cells in different maturation stages generated in the bone marrow. The role of MDSCs in cancer is to suppress T-cell responses, thereby likely regulating tumor progression. In mice, MDSCs are identified by the expression of the surface markers CD11b and Gr-1. Recently, Ly6G+ granulocytic (PMN-MDSC) and Ly6G− monocytic (MO-MDSC) subsets could be distinguished (Movahedi et al. Blood 2008, 111:4233-44). In multiple myeloma patients, the immune function is impaired and this is caused by an immunologically hostile microenvironment and cellular defects, such as decreased numbers of immune cells, and DC or T-cell dysfunction. However, the role of MDSCs in immune suppression in multiple myeloma is not yet described. In this study, we investigated the immunosuppressive activity and mechanism of MDSC subsets in the syngeneic and immunocompetent 5TMM mouse model (5T2 and 5T33 models). In first instance, CD11b+Ly6G− and CD11b+Ly6G+ lineage-committed myeloid MDSC subsets were detected in 5TMM-diseased bone marrow by flow cytometry. These subsets were purified via MACS from the bone marrow of naïve and 5TMM tumor-bearing mice, and analyzed for T-cell suppressive activity. Hereto, CD8+ TCR-transgenic OT-1 splenocytes were stimulated with ovalbumin protein in the presence of purified MDSC subsets, after which T-cell proliferation was measured via 3H-thymidine incorporation. Both MDSC subsets from 5TMM bone marrow were able to suppress antigen-specific T-cell responses at a higher level compared to purified MDSC subsets from normal bone marrow. On average, Ly6G− MDSCs were more suppressive than Ly6G+ MDSCs. The 5T2MM model has a tumor take of approximately 12 weeks. Three weeks after intravenous inoculation of the tumor cells, the suppressive effect of the myeloid subsets was already observed (while the plasmacytosis in the BM was very low and no detectable serum M spike was observed), indicating that T-cell suppression is an early event in MM development. To unravel the suppressive mechanism of the MDSC subsets, inhibitors were used in ovalbumin-stimulated cocultures. Ly6G− MDSC-mediated suppression was partially reversed by the iNOS inhibitor L-NMMA and the COX-2 inhibitor sc-791, both of which lower the NO concentration in culture. In contrast, superoxide dismutase and especially catalase enhance NO concentrations, resulting in enhanced T-cell suppression. None of these inhibitors had any impact on the Ly6G+ MDSC-mediated suppression. In conclusion, these data reveal the presence of MDSCs as a novel immune suppressive strategy employed by multiple myeloma cells in the bone marrow, already occurring early in the disease process. Disclosures: No relevant conflicts of interest to declare.


Nanomedicine ◽  
2020 ◽  
Vol 15 (16) ◽  
pp. 1585-1597 ◽  
Author(s):  
Xiangru Feng ◽  
Jiaxue Liu ◽  
Weiguo Xu ◽  
Gao Li ◽  
Jianxun Ding

Tolerogenic immunotherapy aims to blunt pathogenic inflammation without affecting systemic immunity. However, the anti-inflammatory drugs and immunosuppressive biologics that are used in the clinic usually result in nonspecific immune cell suppression and off-target toxicity. For this reason, strategies have been developed to induce antigen-specific immune tolerance through the delivery of disease-relevant antigens by nanocarriers as a benefit of their preferential internalization by antigen-presenting cells. Herein, we discuss the recent advances in the nanotechnology-based antigen-specific tolerance approaches. Some of these designs are based on nanoparticles delivering antigens and immunoregulatory agents to modulate antigen-presenting pathways, while others directly target T cells via nanoparticle-based artificial antigen-presenting cells. These antigen-specific therapies are hoped to replace systemic immune suppression and provide long-term disease remission.


1995 ◽  
Vol 59 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Raymond M. Welsh ◽  
Liisa K. Selin ◽  
Enal S. Razvi

Sign in / Sign up

Export Citation Format

Share Document