scholarly journals Challenge Tooth Regeneration in Adult Dogs with Dental Pulp Stem Cells on 3D-Printed Hydroxyapatite/Polylactic Acid Scaffolds

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3277
Author(s):  
Rung-Shu Chen ◽  
Sheng-Hao Hsu ◽  
Hao-Hueng Chang ◽  
Min-Huey Chen

Tooth regeneration is an important issue. The purpose of this study was to explore the feasibility of using adult dental pulp stem cells on polylactic acid scaffolds for tooth regeneration. Three teeth were extracted from each side of the lower jaws of two adult dogs. In the experimental group, dental pulp stem cells were isolated and seeded in the 3D-printed hydroxyapatite/polylactic acid (HA/PLA) scaffolds for transplantation into left lower jaw of each dog. The right-side jaw of each dog was transplanted with cell-free scaffolds as the control group. Polychrome sequentially labeling was performed for observation of mineralization. Dental cone beam computed tomography (CBCT) irradiation was used for assessment. Nine months after surgery, dogs were euthanized, and the lower jaws of dogs were sectioned and fixed for histological observation with hematoxylin and eosin staining. The results showed that the degree of mineralization in the experimental group with cells seeded in the scaffolds was significantly higher than that of the control group transplanted with cell-free scaffolds. However, the HA/PLA scaffolds were not completely absorbed in both groups. It is concluded that dental pulp stem cells are important for the mineralization of tooth regeneration. A more rapid absorbable material was required for scaffold design for tooth regeneration.

2018 ◽  
Vol 107 (1) ◽  
pp. 174-186 ◽  
Author(s):  
Milda Alksne ◽  
Egidijus Simoliunas ◽  
Migle Kalvaityte ◽  
Edvinas Skliutas ◽  
Ieva Rinkunaite ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3057 ◽  
Author(s):  
Shuaishuai Cao ◽  
Jonghyeuk Han ◽  
Neha Sharma ◽  
Bilal Msallem ◽  
Wonwoo Jeong ◽  
...  

3D printed biomaterials have been extensively investigated and developed in the field of bone regeneration related to clinical issues. However, specific applications of 3D printed biomaterials in different dental areas have seldom been reported. In this study, we aimed to and successfully fabricated 3D poly (lactic-co-glycolic acid)/β-tricalcium phosphate (3D-PLGA/TCP) and 3D β-tricalcium phosphate (3D-TCP) scaffolds using two relatively distinct 3D printing (3DP) technologies. Conjunctively, we compared and investigated mechanical and biological responses on human dental pulp stem cells (hDPSCs). Physicochemical properties of the scaffolds, including pore structure, chemical elements, and compression modulus, were characterized. hDPSCs were cultured on scaffolds for subsequent investigations of biocompatibility and osteoconductivity. Our findings indicate that 3D printed PLGA/TCP and β-tricalcium phosphate (β-TCP) scaffolds possessed a highly interconnected and porous structure. 3D-TCP scaffolds exhibited better compressive strength than 3D-PLGA/TCP scaffolds, while the 3D-PLGA/TCP scaffolds revealed a flexible mechanical performance. The introduction of 3D structure and β-TCP components increased the adhesion and proliferation of hDPSCs and promoted osteogenic differentiation. In conclusion, 3D-PLGA/TCP and 3D-TCP scaffolds, with the incorporation of hDPSCs as a personalized restoration approach, has a prospective potential to repair minor and critical bone defects in oral and maxillofacial surgery, respectively.


Author(s):  
Ning Wang ◽  
Xiao Han ◽  
Haoqing Yang ◽  
Dengsheng Xia ◽  
Zhipeng Fan

Background: Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation.Methods: In this study, human dental pulp stem cells (DPSCs) were used. Alkaline phosphatase (ALP), Alizarin red staining (ARS), and calcium ion quantification were used to detect the odontogenic differentiation of miR-6807-5p and METTL7A. Real-time RT-PCR, western blot, dual-luciferase reporter assay, and pull-down assay with biotinylated miRNA were used to confirm that METTL7A was the downstream gene of miR-6807-5p. Protein mass spectrometry and co-immunoprecipitation (Co-IP) were used to detect that SNRNP200 was the co-binding protein of METTL7A.Results: After mineralized induction, the odontogenic differentiation was enhanced in the miR-6807-5p-knockdown group and weakened in the miR-6807-5p-overexpressed group compared with the control group. METTL7A was the downstream target of miR-6807-5p. After mineralized induction, the odontogenic differentiation was weakened in the METTL7A-knockdown group and enhanced in the METTL7A-overexpressed group compared with the control group. SNRNP200 was the co-binding protein of METTL7A. The knockdown of SNRNP200 inhibited the odontogenic differentiation of DPSCs.Conclusion: This study verified that miR-6807-5p inhibited the odontogenic differentiation of DPSCs. The binding site of miR-6807-5p was the 3′UTR region of METTL7A, which was silenced by miR-6807-5p. METTL7A promoted the odontogenic differentiation of DPSCs. SNRNP200, a co-binding protein of METTL7A, promoted the odontogenic differentiation of DPSCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jintao Wu ◽  
Na Li ◽  
Yuan Fan ◽  
Yanqiu Wang ◽  
Yongchun Gu ◽  
...  

The calcined tooth powder (CTP), a type of allogeneic biomimetic mineralized material, has been confirmed that can promote new bone formation when obtained at high temperature. The aim of this study was to investigate effects of the conditioned medium of calcined tooth powder (CTP-CM) on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs) and the underlying mechanisms involved. First, ALP activity assay determined that 200 μg/mL was the optimal concentration of CTP-CM for the following experiments. CTP-CM had no significant effect on the proliferation of hDPSCs as indicated by CCK-8 and FCM analysis. Both the gene and protein (DSPP/DSPP, RUNX2/RUNX2, OCN/OCN, OSX/OSX, OPN/OPN, ALP/ALP, and COL-1/COL-1) expression levels increased in the CTP-CM-induced hDPSC group as compared with those in the control group at day 3 or 7, showing the positive regulation of CTP-CM on the osteo/odontogenic differentiation of hDPSCs. Mechanistically, MAPK signaling pathways were activated after the CTP-CM treatment, and the inhibitors targeting MAPK were identified which weakened the effects of CTM-CM on the committed differentiation of hDPSCs. These findings could lead to the creation of stem cell therapies for dental regeneration.


2019 ◽  
Vol 207 (3-4) ◽  
pp. 138-148 ◽  
Author(s):  
Rubia Teodoro Stuepp ◽  
Priscilla Barros Delben ◽  
Filipe Modolo ◽  
Andrea Gonçalves Trentin ◽  
Ricardo Castilho Garcez ◽  
...  

This study aimed to evaluate the use of human dental pulp stem cells (hDPSCs) in non-critical-sized mandibular bone defects in rats. hDPSCs from permanent teeth were isolated and engrafted in mandibular bone defects in rats for 7, 14, and 28 days; bone defects without cells formed the control group. Samples were evaluated by scanning electron microscopy (SEM), light microscopy (hematoxylin and eosin staining), and the regeneration area was measured by the Image J program. Before surgery procedures, the human dental pulp cells were characterized as dental pulp stem cells: fusiform morphology, plastic-adherent; expression of CD105, CD73, and CD90; lack of expression of CD45 and CD34, and differentiated into osteoblasts, adipocytes, and chondroblasts. The results indicated that within 7 days the control group presented a pronounced bone formation when compared with the treated group (p < 0.05). After 14 days, the treated group showed an increase in bone formation, but with no statistical difference among the groups (p > 0.05). In the final evaluated period there was no difference between the control group and the treated group (p > 0.05). There was a significant difference between 7 and 14 days (p < 0.05) and between 7 and 28 days (p < 0.05) in the treated group. In conclusion, there is no evidence that the use of hDPSCs in the conditions of this study could improve bone formation in non-critical-sized mandibular bone defects.


2020 ◽  
Vol 3 (3) ◽  
pp. 267-278
Author(s):  
Alan Jesus ◽  
Adriano Jesus ◽  
Flávia Lima ◽  
Luiz Freitas ◽  
Cássio Meira ◽  
...  

Autogenous bone grafting is needed in some bone tissue defects; however, it causes secondary surgical wounds and morbidity. Tissue bioengineering may be an alternative approach for bone regeneration. Here we investigated the osteogenic potential of dental pulp stem cells from deciduous teeth (DPSC) in association with a Ricinus bone compound (RBC) in a model of bone defect. The influence of the biomaterial RBC on the proliferation and osteogenic differentiation of DPSC was assessed in vitro by MTT metabolism and alizarin red staining, respectively. The morphologic analysis was performed using the optic and scanning electron (SEM) microscopies. For the in vivo study, 54 Wistar rats submitted to calvarial defects were filled with RBC or RBC+DPSC. A control group had the defects filled only with blood clots. Analyses were performed 15, 30 and 60 days after treatment using digital radiography, optical microscopy, SEM and chemical analysis by electron dispersive spectroscopy. The Ricinus bone compound (RBC) did not inhibit the osteogenic differentiation in vitro. No spontaneous regeneration was observed in the control group. The area of the calvarial defect of the RBC+DPSC group showed greater radiopacity on day 15. The RBC presented no reabsorption, was biocompatible and showed osteointegration, working as a mechanical filling. Only sparse ossification areas were found and those were larger and more developed on the RBC+DPSC group when compared to animals treated only with RBC. RBC in association with DPSC is a promising combination for applications in bone regeneration.  


2013 ◽  
Vol 1498 ◽  
pp. 27-31 ◽  
Author(s):  
Satish Bhat ◽  
Christopher Chen ◽  
Deborah A. Day

ABSTRACTTissue engineering aims to save lives by producing synthetic organs and bone. This study is attempting to determine what effects a polycaprolactone (PCL) scaffold will have on the blood flow of Rattus norvegicus, as measured by the number of platelets. Prior to experimentation, it was hypothesized that the polycaprolactone scaffold would maintain and/or increase the number of platelets when compared to the control group. This was developed based on prior research that showed polylactic acid (PLA), a polymer being used currently, and polycaprolactone had similar characteristics like boiling point, melting point, and glass transition temperature. To test this hypothesis, the PCL, created from an existing protocol, was used to mold a scaffold in vitro. Three groups of rats were identified, then further split into an “A” and “B” subdivision with 5 members in each. All “A” subdivision members received the scaffold, while the "B" factions lacked it. Each rat underwent surgery to remove 1mm of the right ventricle, which was replaced by the PCL scaffold in the experimental group. The control group did not have the scaffold replacement. Without this piece of the right ventricle, prior research conducted at the University of Virginia in 2006 suggests that the rats would die within one week. However, in the experimental group of rats, the missing piece of the ventricle was replaced with the scaffold, so if it were accepted then the rats would survive beyond 1week. All rats in the experimental group died exactly 1 week after the control group as predicted before experimentation. After all of the rats had a 1-week acclimation period, a 1mm^2 slice of the heart was extracted and then the number of platelets was counted using a phase contrast microscope. The heart extraction was prepared in a petri dish and then placed into a hemocytometer, splitting the dish into smaller sections making it possible to count. The data supports the hypothesis whereby an average 12% increase in the number of platelets in the rats with the PCL scaffold versus the group without it was seen. This increase in platelet count reflects an increase in blood flow. A statistical t-test was conducted on each trial (n=5 per group, n=10 total per trial) comparing experimental versus control group to calculate a p-value. The p-values were 0.034, 0.045, and 0.022, respectively which indicates statistical significance since the value is less than 0.05. After all experimentation, the benefits of using PCL in tissue engineering were examined. For example, PCL costs $80 less to produce per kilogram than polylactic acid. This study suggests that PCL would be a viable candidate for tissue engineering in humans.


2021 ◽  
Vol 12 (1) ◽  
pp. e30-e30
Author(s):  
Latifa M. Abdelgawad ◽  
Nehal Salah ◽  
Dina Sabry ◽  
Marwa Abdelgwad

Introduction: The regeneration of dental pulp tissue using human dental pulp stem cells (HDPSCs) has attracted increasing attention in recent years. Recent studies have suggested that several factors such as photobiomodulation (PBM) and vitamin D affect the proliferation and differentiation of HDPSCs. Therefore, the present study evaluated the effects of PBM and vitamin D on odontogenic differentiation of HDPSCs for dentin -like tissue formation. Methods: HDPSCs were collected, isolated, and characterized and then divided into six groups: group I, control; group II, vitamin D (10-7 Mol); group III, irradiation at 1 J/cm2 of 810 nm diode laser; group IV, irradiation at 1 J/cm2 and culture with vitamin D; group V, irradiation at 2 J/cm2 , and group VI, irradiation at 2 J/cm2 and culture with vitamin D, cell viability assay was measured through MTT. Alkaline phosphatase (ALP) enzyme activity and mRNA levels of vascular endothelial growth factor (VEGF), bone morphogenic protein-2 (BMP-2), and dentin sialophosphoprotein (DSPP) were also assessed. Results: PBM at 1 and 2 J/cm2 combined with vitamin D significantly promoted HDPSCs proliferation through MTT assay and odontogenic differentiation through gene expression of VEGF, BMP-2, and DSPP levels (P<0.0001). Conclusion: PBM at 2 J/cm2 combined with vitamin D enhanced the HDPSCs proliferation and odontogenic differentiation and thus could be a novel strategy for dentin regeneration in dentistry.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5308
Author(s):  
Marialucia Gallorini ◽  
Susi Zara ◽  
Alessia Ricci ◽  
Francesco Guido Mangano ◽  
Amelia Cataldi ◽  
...  

Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.


Sign in / Sign up

Export Citation Format

Share Document