scholarly journals Phosphorylation-Induced Ubiquitination and Degradation of PXR through CDK2-TRIM21 Axis

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Mengyao Qin ◽  
Yu Xin ◽  
Yong Bian ◽  
Xuan Yang ◽  
Tao Xi ◽  
...  

Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily that is activated by a variety of endogenous metabolites or xenobiotics. Its downstream target genes are involved in metabolism, inflammation and processes closely related to cancer. However, the stability regulation of PXR protein resulting from post-translational modification is still largely undefined. In the present study, primary mouse hepatocytes, hepatoma HepG2 cells and HEK 293T cells were used to investigate gene expression and protein interactions. The role of kinases was evaluated by RNA interference and overexpression constructs with or without PXR phosphorylation site mutations. The activity of CYP3A4 and P-gp was determined by enzymatic and substrate accumulation assays. It was found that E3 ubiquitin ligase TRIM21 mediates the ubiquitination and degradation of PXR and plays an important role in regulating the activity of PXR. On this basis, PXR phosphorylation-associated kinases were evaluated regarding regulation of the stability of PXR. We found cyclin dependent kinase 2 (CDK2) exclusively phosphorylates PXR at Ser350, promotes its disassociation with Hsp90/DNAJC7, and leads to subsequent TRIM21-mediated PXR ubiquitination and degradation. As well-known CDK inhibitors, dinaciclib and kenpaullone stabilize PXR and result in elevated expression and activity of PXR-targeted DMETs, including carboxylesterases, CYP3A4 and P-gp. The suppressed degradation of PXR by CDK2 inhibitors denotes dinaciclib-induced promotion of PXR-targeted genes. The findings of CDK2-mediated PXR degradation indicate a wide range of potential drug–drug interactions during clinical cancer therapy using CDK inhibitors and imply an alternative direction for the development of novel PXR antagonists.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Tsai-Sung Tai ◽  
Ni Tien ◽  
Hsin-Yi Shen ◽  
Fang-Yi Chu ◽  
Charles C. N. Wang ◽  
...  

Liver X receptor (LXR) is a nuclear receptor that regulates various biological processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver disease (NAFLD). Sesamin is a naturally occurring lignan in many dietary plants and has a wide range of beneficial effects on metabolism. The mechanism underlying sesamin action especially on the regulation of LXR remains elusive. Reporter assays, mRNA and protein expression, and in silico modeling were used to identify sesamin as an antagonist of LXRα. Sesamin was applied to the hepatic HepaRG and intestinal LS174T cells and showed that it markedly ameliorated lipid accumulation in the HepaRG cells, by reducing LXRα transactivation, inhibiting the expression of downstream target genes. This effect was associated with the stimulation of AMP-activated protein kinase (AMPK) signaling pathway, followed by decreased T0901317-LXRα-induced expression of SREBP-1c and its downstream target genes. Mechanistically, sesamin reduced the recruitment of SRC-1 but enhanced that of SMILE to the SREBP-1c promoter region under T0901317 treatment. It regulated the transcriptional control exerted by LXRα by influencing its interaction with coregulators and thus decreased mRNA and protein levels of genes downstream of LXRα and reduced lipid accumulation in hepatic cells. Additionally, sesamin reduced valproate- and rifampin-induced LXRα and pregnane X receptor (PXR) transactivation. This was associated with reduced expression of target genes and decreased lipid accumulation. Thus, sesamin is an antagonist of LXRα and PXR and suggests that it may alleviate drug-induced lipogenesis via the suppression of LXRα and PXR signaling.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


2020 ◽  
Vol 52 (11) ◽  
pp. 1227-1235
Author(s):  
Xiaoyu Wang ◽  
Huifang Zhang ◽  
Meixue Xu ◽  
Xin’E Shi ◽  
Gongshe Yang ◽  
...  

Abstract miRNAs are a small class of noncoding RNAs that perform biological functions by regulating the stability or translation of target genes in various biological processes. This study illustrated the role of miR-10a-5p, which is relatively enriched in adipose tissues, using primary mouse preadipocytes as model. With elevated miR-10a-5p expression, the proliferative ability of mouse preadipocytes was significantly enhanced, indicated by increased EdU+ cells and G1/S transition, accompanied by upregulated Cyclin B, Cyclin D and PCNA and downregulated p21 and p27. Meanwhile, the adipogenic differentiation was significantly attenuated by elevated miR-10a-5p, supported by Oil Red O staining and suppressed PPARγ and aP2 expression. Furthermore, Map2k6 and Fasn were predicted to be the target genes of miR-10a-5p in silico, and dual luciferase reporter assay confirmed the direct targeting effects. Western blot analysis results showed that miR-10a-5p specially reduced Map2k6 expression at the proliferative stage without affecting Fasn expression, while significantly restrained Fasn expression with unchanged Map2k6 expression during adipogenic differentiation. Taken together, these results revealed a potential role of miR-10a-5p in adipogenesis and in the treatment of obesity.


2009 ◽  
Vol 88 (8) ◽  
pp. 693-703 ◽  
Author(s):  
J.H. Jonason ◽  
G. Xiao ◽  
M. Zhang ◽  
L. Xing ◽  
D. Chen

The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermore, Runx2 is involved in numerous protein-protein interactions, most of which either activate or repress transcription of target genes. In this review, we discuss expression of Runx2 during development as well as the post-translational regulation of Runx2 through modification by phosphorylation, ubiquitination, and acetylation.


2021 ◽  
Author(s):  
Lindsey R. Pack ◽  
Leighton H. Daigh ◽  
Mingyu Chung ◽  
Tobias Meyer

Abstract Understanding the stability or binding affinity of protein complex members is important for understanding their regulation and roles in cells. While there are many biochemical methods to measure protein-protein interactions in vitro, these methods often rely on the ability to robustly purify components individually. Moreover, few methods have been developed to study protein complexes within live cells. Binding parameters for cyclin-dependent kinase (CDK) complexes have been challenging to measure due to difficulty expressing and purifying CDKs separately from activating cyclins. Here, we develop a method to measure off-rates of protein complex components in live-cells. Our method relies on the stable tethering of CDK to the inner nuclear membrane (Figure 1), and the utilization of FRAP to measure the off-rate of soluble, fluorescently-tagged CDK binding proteins. We use this method to study dimeric CDK complexes, measuring the off-rates of cyclins or INK4 CDK inhibitor p16 from CDKs, and trimeric CDK complexes, measuring the off-rate of cyclins and CIP/KIP CDK inhibitors p21 and p27 when bound together.


2018 ◽  
Author(s):  
Jason Ziveri ◽  
Cerina Chhuon ◽  
Anne Jamet ◽  
Guénolé Prigent ◽  
Héloïse Rytter ◽  
...  

AbstractFrancisella tularensisis a facultative intracellular pathogen that causes the zoonotic disease tularemia in human and animal hosts. This bacterium possesses a non-canonical type VI secretion systems (T6SS) required for phagosomal escape and access to its replicative niche in the cytosol of infected macrophages. KCl stimulation has been previously used to trigger assembly and secretion of the Francisella T6SS in culture. We found that the amounts of essentially all the TSS6 proteins remained unchanged upon KCl stimulation. We therefore hypothesized that a post-translational modification might be involved in T6SS assembly. A whole cell phosphoproteomic analysis allowed us to identify a unique phosphorylation site on IglB, the TssC homologue and key component of the T6SS sheath. Importantly, the phosphorylated form of IglB was not present in the contracted sheath and 3D modeling indicated that the charge repulsion provoked by addition of a phosphogroup on tyrosine 139 was likely to weaken the stability of the sheath structure. Substitutions of the phosphorylatable residue of IglB (tyrosine 139) with alanine or with phosphomimetics prevented T6SS formation and totally impaired phagosomal escape. In contrast, the substitution with the non-phosphorylatable aromatic analog phenylalanine impaired but did not prevent phagosomal escape and cytosolic bacterial multiplication in J774-1 macrophages. Altogether these data suggest that phosphorylation of the sheath participates to T6SS disassembly. Post-translational modifications of the sheath may represent a previously unrecognized mechanism to finely modulate the dynamics of T6SS assembly-disassembly.Data are available via ProteomeXchange with identifier PXD012507.SynopsisFrancisellapossesses a non-canonical T6SS that is essential for efficient phagosomal escape and access to the cytosol of infected macrophages. KCl stimulation has been previously used to trigger assembly and secretion of the Francisella T6SS in culture. We found that KCl stimulation did not result in an increased production of TSS6 proteins. We therefore hypothesized that a post-translational modification might be involved in T6SS assembly. Using a global and site-specific phosphoproteomic analysis ofFrancisellawe identified a unique phosphorylation site on IglB, the TssC homologue and a key component of the T6SS contractile sheath. We show that this site plays a critical role in T6SS biogenesis and propose that phosphorylation may represent a new mechanism affecting the dynamics of sheath formation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaowen Hu ◽  
Mengsiyu Li ◽  
Chunxue Zhang ◽  
Shuguang Pang

Background. Metformin, as a first-line treatment for diabetes, interacts with many protein kinases and transcription factors which affect the expression of downstream target genes governing drug metabolism. Sulfotransferase, SULT2A1, one phase II metabolic enzyme, sulfonates both xenobiotic and endobiotic compounds to accelerate drug excretion. Herein, we designed experiments to investigate the effects and mechanisms of metformin on SULT2A1 expression in vitro. Methods. The hepatocellular carcinoma cell line, HepaRG, was cultured with different concentrations of metformin. The cell viability was measured using CCK8 kit. HepaRG was used to evaluate the protein expression of pregnane X receptor (PXR), the constitutive androstane receptor (CAR), SULT2A1, AMP-activated protein kinase (AMPK), and phosphorylation of AMPK (p-AMPK), respectively, at different concentrations of metformin with or without rifampin (human PXR activator) and CITCO (human CAR activator). The coregulators with CAR on SULT2A1 promoter response elements have also been characterized. Results. We showed that metformin did not affect the basic expression of SULT2A1 but could suppress the expression of SULT2A1 induced by the activator of human CAR. Investigations revealed that metformin which could block CAR nuclear translocation further suppress SULT2A1. In addition, we found that the prevented CAR transfer into the nucleus by metformin was partially an AMPK-dependent event. Conclusion. The present study indicated that the activation of AMPK-CAR pathway mediated the suppression of SULT2A1 by metformin. Metformin may affect the metabolism and clearance of drugs which are SULT2A1 substrates. The results that emerged from this work provide substantial insights into an appropriate medication in the treatment of diabetes patients.


2020 ◽  
Author(s):  
Md. Shahadat Hossain ◽  
Arpita Singha Roy ◽  
Md. Sajedul Islam

AbstractRas association domain-containing protein 5 (RASSF5), one of the prospective biomarkers for tumors, generally plays a crucial role as a tumor suppressor. As deleterious effects can result from functional differences through SNPs, we sought to analyze the most deleterious SNPs of RASSF5 as well as predict the structural changes associated with the mutants that hamper the normal protein-protein interactions. We adopted both sequence and structure based approaches to analyze the SNPs of RASSF5 protein. We also analyzed the putative post translational modification sites as well as the altered protein-protein interactions that encompass various cascades of signals. Out of all the SNPs obtained from the NCBI database, only 25 were considered as highly deleterious by six in silico SNP prediction tools. Among them, upon analyzing the effect of these nsSNPs on the stability of the protein, we found 17 SNPs that decrease the stability. Significant deviation in the energy minimization score was observed in P350R, F321L, and R277W. Besides this, docking analysis confirmed that P350R, A319V, F321L, and R277W reduce the binding affinity of the protein with H-Ras, where P350R shows the most remarkable deviation. Protein-protein interaction analysis revealed that RASSF5 acts as a hub connecting two clusters consisting of 18 proteins and alteration in the RASSF5 may lead to disassociation of several signal cascades. Thus, based on these analyses, our study suggests that the reported functional SNPs may serve as potential targets for different proteomic studies, diagnosis and therapeutic interventions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Joby Issac ◽  
Pooja S. Raveendran ◽  
Ani V. Das

AbstractRegulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.


2009 ◽  
Vol 20 (14) ◽  
pp. 3353-3362 ◽  
Author(s):  
Águeda G. Espina ◽  
Cristina Méndez-Vidal ◽  
Miguel A. Moreno-Mateos ◽  
Carmen Sáez ◽  
Ana Romero-Franco ◽  
...  

Pituitary tumor-transforming gene-1 (PTTG1) is an oncogene highly expressed in a variety of endocrine, as well as nonendocrine-related cancers. Several tumorigenic mechanisms for PTTG1 have been proposed, one of the best characterized being its capacity to act as a transcriptional activator. To identify novel downstream target genes, we have established cell lines with inducible expression of PTTG1 and a differential display approach to analyze gene expression changes after PTTG1 induction. We identified dlk1 (also known as pref-1) as one of the most abundantly expressed PTTG1 targets. Dlk1 is known to participate in several differentiation processes, including adipogenesis, adrenal gland development, and wound healing. Dlk1 is also highly expressed in neuroendocrine tumors. Here, we show that PTTG1 overexpression inhibits adipogenesis in 3T3-L1 cells and that this effect is accomplished by promoting the stability and accumulation of Dlk1 mRNA, supporting a role for PTTG1 in posttranscriptional regulation. Moreover, both pttg1 and dlk1 genes show concomitant expression in fetal liver and placenta, as well as in pituitary adenomas, breast adenocarcinomas, and neuroblastomas, suggesting that PTTG1 and DLK1 are involved in cell differentiation and transformation.


Sign in / Sign up

Export Citation Format

Share Document