scholarly journals Rho Family of Ras-Like GTPases in Early-Branching Animals

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2279
Author(s):  
Silvestar Beljan ◽  
Maja Herak Bosnar ◽  
Helena Ćetković

Non-bilaterian animals consist of four phyla; Porifera, Cnidaria, Ctenophora, and Placozoa. These early-diverging animals are crucial for understanding the evolution of the entire animal lineage. The Rho family of proteins make up a major branch of the Ras superfamily of small GTPases, which function as key molecular switches that play important roles in converting and amplifying external signals into cellular responses. This review represents a compilation of the current knowledge on Rho-family GTPases in non-bilaterian animals, the available experimental data about their biochemical characteristics and functions, as well as original bioinformatics analysis, in order to gain a general insight into the evolutionary history of Rho-family GTPases in simple animals.

2021 ◽  
Vol 8 ◽  
Author(s):  
Anthony C. Brandt ◽  
Olivia J. Koehn ◽  
Carol L. Williams

Newly synthesized small GTPases in the Ras and Rho families are prenylated by cytosolic prenyltransferases and then escorted by chaperones to membranes, the nucleus, and other sites where the GTPases participate in a variety of signaling cascades. Understanding how prenylation and trafficking are regulated will help define new therapeutic strategies for cancer and other disorders involving abnormal signaling by these small GTPases. A growing body of evidence indicates that splice variants of SmgGDS (gene name RAP1GDS1) are major regulators of the prenylation, post-prenylation processing, and trafficking of Ras and Rho family members. SmgGDS-607 binds pre-prenylated small GTPases, while SmgGDS-558 binds prenylated small GTPases. This review discusses the history of SmgGDS research and explains our current understanding of how SmgGDS splice variants regulate the prenylation and trafficking of small GTPases. We discuss recent evidence that mutant forms of RabL3 and Rab22a control the release of small GTPases from SmgGDS, and review the inhibitory actions of DiRas1, which competitively blocks the binding of other small GTPases to SmgGDS. We conclude with a discussion of current strategies for therapeutic targeting of SmgGDS in cancer involving splice-switching oligonucleotides and peptide inhibitors.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jian-geng Chiou ◽  
Kyle D Moran ◽  
Daniel J Lew

The diversity of cell morphologies arises, in part, through regulation of cell polarity by Rho-family GTPases. A poorly understood but fundamental question concerns the regulatory mechanisms by which different cells generate different numbers of polarity sites. Mass-conserved activator-substrate (MCAS) models that describe polarity circuits develop multiple initial polarity sites, but then those sites engage in competition, leaving a single winner. Theoretical analyses predicted that competition would slow dramatically as GTPase concentrations at different polarity sites increase towards a 'saturation point', allowing polarity sites to coexist. Here, we test this prediction using budding yeast cells, and confirm that increasing the amount of key polarity proteins results in multiple polarity sites and simultaneous budding. Further, we elucidate a novel design principle whereby cells can switch from competition to equalization among polarity sites. These findings provide insight into how cells with diverse morphologies may determine the number of polarity sites.


2019 ◽  
Vol 8 (8) ◽  
pp. 1180 ◽  
Author(s):  
Matteo Bonato ◽  
Mariaenrica Tiné ◽  
Erica Bazzan ◽  
Davide Biondini ◽  
Marina Saetta ◽  
...  

Asthma is a heterogeneous condition characterized by reversible airflow limitation, with different phenotypes and clinical expressions. Although it is known that asthma is influenced by age, gender, genetic background, and environmental exposure, the natural history of the disease is still incompletely understood. Our current knowledge of the factors determining the evolution from wheezing in early childhood to persistent asthma later in life originates mainly from epidemiological studies. The underlying pathophysiological mechanisms are still poorly understood. The aim of this review is to converge epidemiological and pathological evidence early in the natural history of asthma to gain insight into the mechanisms of disease and their clinical expression.


2012 ◽  
Vol 40 (6) ◽  
pp. 1378-1382 ◽  
Author(s):  
Alan Hall

Rho GTPases comprise a family of molecular switches that control signal transduction pathways in eukaryotic cells. A conformational change induced upon binding GTP promotes an interaction with target (effector) proteins to generate a cellular response. A highly conserved function of Rho GTPases from yeast to humans is to control the actin cytoskeleton, although, in addition, they promote a wide range of other cellular activities. Changes in the actin cytoskeleton drive many dynamic aspects of cell behaviour, including morphogenesis, migration, phagocytosis and cytokinesis, and the dysregulation of Rho GTPases is associated with numerous human diseases and disorders.


2006 ◽  
Vol 34 (1) ◽  
pp. 73-76 ◽  
Author(s):  
S.H. Soderling ◽  
J.D. Scott

The small GTPases Rho, Rac and Cdc42 (cell-division cycle 42) function as molecular switches to modulate the actin cytoskeleton. They achieve this by modulating the activity of downstream cellular targets. One group of Rho GTPase effectors, WAVE (Wiskott–Aldrich syndrome protein verprolin homologous)-1, WAVE-2 and WAVE-3, function as scaffolds for actin-based signalling complexes. The present review highlights current knowledge regarding the biochemistry of the WAVE signalling complexes and their biological significance.


Blood ◽  
2006 ◽  
Vol 107 (8) ◽  
pp. 3145-3152 ◽  
Author(s):  
Wangsun Choi ◽  
Zubair A. Karim ◽  
Sidney W. Whiteheart

Abstract Small GTPases play critical roles in hemostasis, though the roster of such molecules in platelets is not complete. In this study, we report the presence of Ras-related GTPases of the ADP-ribosylation factor (Arf) family. Platelets contain Arf1 or 3 and Arf6, with the latter being predominantly membrane associated. Using effector domain pull-down assays, we show, counter to other GTPases, that Arf6-GTP is present in resting platelets and decreases rapidly upon activation with collagen or convulxin. This decrease does not completely rely on secondary agonists (ADP and thromboxane A2) or require integrin signaling. The decrease in free Arf6-GTP temporally precedes activation of Rho family GTPases (RhoA, Cdc42, and Rac1). Using a membrane-permeant, myristoylated peptide, which mimics the N-terminus of Arf6, we show that the Arf6-GTP decrease is essential for collagen- and convulxin-induced aggregation, platelet adherence, and spreading on collagen-coated glass. Treatment with this peptide also affects the activation of Rho family GTPases, but has little effect on RalA and Rap1 or on agonist-induced calcium mobilization. These data show that Arf6 is a key element in activation through GPVI, and is required for activation of the Rho family GTPases and the subsequent cytoskeletal rearrangements needed for full platelet function.


2006 ◽  
Vol 175 (3) ◽  
pp. 453-463 ◽  
Author(s):  
Jayesh C. Patel ◽  
Jorge E. Galán

Salmonella enterica, the cause of food poisoning and typhoid fever, has evolved sophisticated mechanisms to modulate Rho family guanosine triphosphatases (GTPases) to mediate specific cellular responses such as actin remodeling, macropinocytosis, and nuclear responses. These responses are largely the result of the activity of a set of bacterial proteins (SopE, SopE2, and SopB) that, upon delivery into host cells via a type III secretion system, activate specific Rho family GTPases either directly (SopE and SopE2) or indirectly (SopB) through the stimulation of an endogenous exchange factor. We show that different Rho family GTPases play a distinct role in Salmonella-induced cellular responses. In addition, we report that SopB stimulates cellular responses by activating SH3-containing guanine nucleotide exchange factor (SGEF), an exchange factor for RhoG, which we found plays a central role in the actin cytoskeleton remodeling stimulated by Salmonella. These results reveal a remarkable level of complexity in the manipulation of Rho family GTPases by a bacterial pathogen.


2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Michelle Seiko Lu ◽  
David G. Drubin

Small GTPases of the Rho family are binary molecular switches that regulate a variety of processes including cell migration and oriented cell divisions. Known Cdc42 effectors include proteins involved in cytoskeletal remodeling and kinase-dependent transcription induction, but none are involved in the maintenance of nuclear envelope integrity or ER morphology. Maintenance of nuclear envelope integrity requires the EndoSomal Complexes Required for Transport (ESCRT) proteins, but how they are regulated in this process remains unknown. Here, we show by live-cell imaging a novel Cdc42 localization with ESCRT proteins at sites of nuclear envelope and ER fission and, by genetic analysis of cdc42 mutant yeast, uncover a unique Cdc42 function in regulation of ESCRT proteins at the nuclear envelope and sites of ER tubule fission. Our findings implicate Cdc42 in nuclear envelope sealing and ER remodeling, where it regulates ESCRT disassembly to maintain nuclear envelope integrity and proper ER architecture.


2021 ◽  
Author(s):  
Anthony F Arena ◽  
Daniel D Shaye

The Rho-family of small GTPases, which play crucial roles in development and disease, are regulated by many signal-transduction cascades, including G-protein-coupled receptor (GPCR)-heterotrimeric G-protein (Gα/β/γ) pathways. Using genetic approaches in C. elegans we identified a new role for Gα and Rho/Rac signaling in cell outgrowth during tubulogenesis and show that the Chloride Intracellular Channel (CLIC) protein EXC-4 is an evolutionarily-conserved player in this pathway. The gene exc-4 was identified by its role in tubulogenesis of the excretory canal (ExCa) cell: a unicellular tube required for osmoregulation and fluid clearance. We identified a new exc-4 loss-of-function allele that affects an evolutionarily conserved residue in the C-terminus. Using this mutant we identified genetic interactions between exc-4, Gα's and Rho-family GTPases, defining novel roles for Gα-encoding genes (gpa-12/Gα12/13, gpa-7/Gαi, egl-30/Gαq, and gsa-1/Gαs) and the Rho-family members ced-10/Rac and mig-2/RhoG in ExCa outgrowth. EXC-4 and human CLICs have conserved functions in tubulogenesis, and CLICs and Gα-Rho/Rac signaling regulate tubulogenesis during blood vessel development. Therefore, our work defines a primordial role for EXC-4/CLICs in Gα-Rho/Rac-signaling during tubulogenesis.


2019 ◽  
Author(s):  
Michelle S. Lu ◽  
David G. Drubin

AbstractSmall GTPases of the Rho family are binary molecular switches that regulate a variety of processes including cell migration and oriented cell divisions. Known Cdc42 effectors include proteins involved in cytoskeletal remodeling and kinase-dependent transcription induction, but none involved in the maintenance of nuclear envelope integrity or endoplasmic reticulum (ER) morphology. Maintenance of nuclear envelope integrity requires the EndoSomal Complexes Required for Transport (ESCRT) proteins, but how they are regulated in this process remains unknown. Here we show by live-cell imaging a novel Cdc42 localization with ESCRT proteins at sites of nuclear envelope and ER fission, and by genetic analysis, uncover a unique Cdc42 function in regulation of ESCRT proteins at the nuclear envelope and sites of ER tubule fission. Our findings implicate Cdc42 in nuclear envelope sealing and ER remodeling, where it regulates ESCRT disassembly to maintain nuclear envelope integrity and proper ER architecture.SummaryThe small Rho GTPase Cdc42 is a well-known regulator of cytoskeletal rearrangement and polarity development in all eukaryotic cell types. Here, Lu and Drubin report the serendipitous discovery of a novel Cdc42-ESCRT-nuclear envelope/endoplasmic reticulum connection.


Sign in / Sign up

Export Citation Format

Share Document