scholarly journals Red LED Light Acts on the Mitochondrial Electron Chain of Mammalian Sperm via Light-Time Exposure-Dependent Mechanisms

Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2546 ◽  
Author(s):  
Olga Blanco-Prieto ◽  
Jaime Catalán ◽  
Lina Trujillo-Rojas ◽  
Alejandro Peña ◽  
Maria Montserrat Rivera del Álamo ◽  
...  

This work analyzes the effects of red LED light on mammalian sperm mitochondrial function, using the pig as an animal model. Liquid-stored pig semen was stimulated with red-light for 1, 5 and 10 min in the presence or absence of oligomycin A, a specific inhibitor of mitochondrial ATP synthase, or carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), a specific disruptor of mitochondrial electron chain. Whereas exposure for 1 and 5 min significantly (p < 0.05) decreased total motility and intracellular ATP levels, irradiation for 10 min induced the opposite effect. Oligomycin A abolished the light-effects on intracellular ATP levels, O2 consumption and mitochondrial membrane potential, whereas compared to non-irradiated samples, FCCP significantly (p < 0.05) increased O2 consumption when sperm were irradiated for 1 min. Both oligomycin A and FCCP significantly (p < 0.05) decreased total motility. Red-light increased cytochrome c oxidase activity with a maximal effect after 5 min of irradiation, which was abolished by both oligomycin A and FCCP. In conclusion, red-light modulates sperm mitochondrial function via electron chain activity in an exposition, time-dependent manner.

Author(s):  
Jaime Catalán ◽  
Marion Papas ◽  
Lina Trujillo-Rojas ◽  
Olga Blanco-Prieto ◽  
Sebastián Bonilla-Correal ◽  
...  

This work aimed to investigate how stimulation of donkey sperm with red LED light affects mitochondrial function. For this purpose, freshly diluted donkey semen was stimulated with red light for 1, 5, and 10 min, in the presence or absence of oligomycin A (Omy A), a specific inhibitor of mitochondrial ATP synthase, or FCCP, a specific disruptor of mitochondrial electron chain. The results obtained in the present study indicated that the effects of red LED light on fresh donkey sperm function are related to changes in mitochondria function. In effect, irradiation of donkey sperm resulted in an increase in mitochondrial membrane potential (MMP), the activity of cytochrome C oxidase and the rate of oxygen consumption. In addition, in the absence of oligomycin A and FCCP, light-stimulation augmented the average path velocity (VAP) and modified the structure of motile sperm subpopulations, increasing the fastest and most linear subpopulation. In contrast, the presence of either Omy A or FCCP abolished the aforementioned effects. Interestingly, our results also showed that the effects of red light depend on the exposure time applied, as indicated by the observed differences between irradiation protocols. In conclusion, our results suggest that exposing fresh donkey sperm to red light modulates the function of their mitochondria through affecting the activity of the electron chain. However, the extent of this effect depends on the irradiation pattern and does not exclude the existence of other mechanisms, such as those related to thermotaxis.


Biology ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 254 ◽  
Author(s):  
Jaime Catalán ◽  
Marion Papas ◽  
Sabrina Gacem ◽  
Yentel Mateo-Otero ◽  
Joan E. Rodríguez-Gil ◽  
...  

Previous studies in other mammalian species have shown that stimulation of semen with red-light increases sperm motility, mitochondrial activity, and fertilizing capacity. This study sought to determine whether red-light stimulation using a light emitting diode (LED) at 620–630 nm affects sperm motility and structure of motile subpopulations, sperm viability, mitochondrial activity, intracellular ATP levels, rate of O2 consumption and DNA integrity of horse spermatozoa. For this purpose, nine ejaculates were collected from nine different adult stallions. Upon collection, semen was diluted in Kenney extender, analyzed, its concentration was adjusted, and finally it was stimulated with red-light. In all cases, semen was packaged in 0.5-mL transparent straws, which were randomly divided into controls and 19 light-stimulation treatments; 6 consisted of a single exposure to red-light, and the other 13 involved irradiation with intervals of irradiation and darkness (light-dark-light). After irradiation, sperm motility was assessed using a Computerized Semen Analysis System (CASA). Flow cytometry was used to evaluate sperm viability, mitochondrial membrane potential and DNA fragmentation. Intracellular levels of ATP and O2 consumption rate were also determined. Specific red-light patterns were found to modify kinetics parameters (patterns: 4, 2-2-2, 3-3-3, 4-4-4, 5-1-5, and 5-5-5 min), the structure of motile sperm subpopulations (patterns: 2, 2-2-2, 3-3-3, and 4-1-4 min), mitochondrial membrane potential (patterns: 4, 3-3-3, 4-4-4, 5-1-5, 5-5-5, 15-5-15, and 15-15-15 min), intracellular ATP levels and the rate of O2 consumption (pattern: 4 min), without affecting sperm viability or DNA integrity. Since the increase in some kinematic parameters was concomitant with that of mitochondrial activity, intracellular ATP levels and O2 consumption rate, we suggest that the positive effect of light-irradiation on sperm motility is related to its impact upon mitochondrial activity. In conclusion, this study shows that red LED light stimulates motility and mitochondrial activity of horse sperm. Additional research is needed to address the impact of red-light irradiation on fertilizing ability and the mechanisms through which light exerts its effects.


2014 ◽  
Vol 26 (6) ◽  
pp. 883 ◽  
Author(s):  
Laura Ramió-Lluch ◽  
Marc Yeste ◽  
Josep M. Fernández-Novell ◽  
Efrén Estrada ◽  
Luiz Rocha ◽  
...  

Incubation of boar spermatozoa in a capacitation medium with oligomycin A, a specific inhibitor of the F0 component of the mitochondrial ATP synthase, induced an immediate and almost complete immobilisation of cells. Oligomycin A also inhibited the ability of spermatozoa to achieve feasible in vitro capacitation (IVC), as measured through IVC-compatible changes in motility patterns, tyrosine phosphorylation levels of the acrosomal p32 protein, membrane fluidity and the ability of spermatozoa to achieve subsequent, progesterone-induced in vitro acrosome exocytosis (IVAE). Both inhibitory effects were caused without changes in the rhythm of O2 consumption, intracellular ATP levels or mitochondrial membrane potential (MMP). IVAE was accompanied by a fast and intense peak in O2 consumption and ATP levels in control spermatozoa. Oligomycin A also inhibited progesterone-induced IVAE as well as the concomitant peaks of O2 consumption and ATP levels. The effect of oligomycin on IVAE was also accompanied by concomitant alterations in the IVAE-induced changes on intracellular Ca2+ levels and MMP. Our results suggest that the oligomycin A-sensitive mitochondrial ATP-synthase activity is instrumental in the achievement of an adequate boar sperm motion pattern, IVC and IVAE. However, this effect seems not to be linked to changes in the overall maintenance of adequate energy levels in stages other than IVAE.


2017 ◽  
Vol 2 (6) ◽  
pp. 529
Author(s):  
Chandra Kurnia Setiawan ◽  
Supriyadi Supriyadi ◽  
Umar Santoso ◽  
Gang Ma ◽  
Masaya Kato

Ascorbate is one of the most abundant soluble antioxidants in the plant. Multiple functions of ascorbate in photo protection have been proposed, including scavenging of reactive oxygen species generated by oxygen photoreduction and photorespiration. There is still unclear information relation to LED light with Ascorbate biosynthesis and metabolism, yellowing, chlorophyll content, and ethylene production in broccoli florets. The effect of light-emitting diodes (LED) light on ascorbate (AsA) biosynthesis and metabolism in broccoli (Brassica oleracea L. var. Italica) cultivar “Ryokurei” were studied using red (660 nm), blue (470 nm) and white LED lights as the light source and also no light treatment as the control. Gene expression involved in the biosynthesis and metabolism of AsA, AsA content, color, chlorophyll content and ethylene production rate on the postharvest broccoli were observed in 4 days. The result showed that after two days, red light treatment significantly (p < 0,05) delayed the decrease of ascorbate content. The result was supported by observations using Real-Time Quantitative RT-PCR showed that red light treatment can suppress mRNA level of BO-APX1, BO-APX2, and BO-sAPX on the third day. Observation of BO-GLDH mRNA level was increased in the third-day exposure of red LED light. Therefore red LED light showed up-regulated AsA biosynthesis transcriptional level. Enzymes which possibility responsible for AsA metabolism and biosynthesis in a row were Ascorbate Peroxide (APX) and L-Galactono-1,4-Lactone Dehydrogenase (GLDH). The regulation of this gene expression might contribute to the suppression of AsA reduction by red LED light treatment in broccoli. Red LED also showed suppression of yellowing and decline the chlorophyll content in postharvest broccoli florets. Keywords: ascorbate, LED; broccoli; gene expression; real-time quantitative RT-PCR.


2011 ◽  
Vol 04 (01) ◽  
pp. 45-52 ◽  
Author(s):  
GUANGDA LIU ◽  
CHANGE PAN ◽  
KAI LI ◽  
YUAN TAN ◽  
XUNBIN WEI

In this paper, we studied portable blue and red light-emitting-diode (LED) light sources in phototherapy for mild to moderate acne vulgaris to evaluate the efficacy and tolerance of patients. Patients, randomly divided into blue and red groups, received either blue or red LED phototherapy twice a week for four weeks. After complete treatment, the number of lesions reduced by 71.4% in the blue group, in contrast to 19.5% in the red group. No obvious side effects were observed during and one month after the treatment, except for some mild dryness mentioned by several patients.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1656
Author(s):  
Sara Crespo ◽  
Mateo Martínez ◽  
Joaquín Gadea

In pigs, it has been reported that increased farrowing rates and litter size have been induced by photostimulating the seminal doses for artificial insemination with red LED light. As the reproductive characteristics, production system, and outcome parameters of Iberian breed pigs are different from other commercial breeds, the aim of this study was to evaluate the possible effect of illuminating seminal doses from Duroc boars with red LED light and the fertility outcomes of Iberian females. Semen samples were obtained from 38 fertile Duroc boars. Photostimulation of the artificial insemination (AI) seminal doses was carried out by illuminating the samples with a red LED for 10 min, followed by 10 min of darkness, and finally 10 additional minutes of red light. The fertility study was conducted on two commercial farms using multiparous Iberian sows (farm A, n = 824; farm B, n = 2131), that were randomly assigned to LED (L) or control (C) groups. No differences were found between L and C groups in both farms (p > 0.05) for parity, pregnancy rate, duration of pregnancy, farrowing rate, and litter size (total, alive, and stillborn piglets). Farrowing rates in farm A were 88.8% (n = 383) for control and 89.6% (n = 441, p = 0.67) for the LED group. In farm B, farrowing rates were C:90.5% (n = 1030) and L: 90.1% (n = 1101, p = 0.48). In farm A, total born piglets were 8.69 ± 0.11 for C and 8.71 ± 0.11 for L (p = 0.87). In farm B, the results were 8.72 ± 0.7 for C and 8.70 ± 0.06 (p = 0.82) for L. Under the production conditions for the Iberian breed, the photostimulation with red LED light using Duroc pig seminal doses was not effective in improving the fertility of Iberian sows.


2021 ◽  
Vol 13 (5) ◽  
pp. 2489
Author(s):  
Paraskevi Psachoulia ◽  
Christos Chatzidoukas

The light spectrum effect on the cultivation efficiency of the microalgae strain Stichococcus sp. is explored, as a means of potentially intensifying the biomass productivity and regulating the cellular composition. Stichococcus sp. batch culture experiments, within a 3 L bench-top photobioreactor (PBR), are designed and implemented under different light spectrum profiles (i.e., cool white light (WL), cool white combined with red light (WRL), and cool white combined with blue light, (WBL)). The obtained results indicate that the studied strain is capable of adapting its metabolite profile to the light field to which it is exposed. The highest biomass concentration (3.5 g/L), combined with intense carbohydrate accumulation activity, resulting in a respective final concentration of 1.15 g/L was achieved within 17 days using exclusively cool white light of increasing intensity. The addition of blue light emitting diodes (LED) light, combined with appropriately selected culture conditions, contributed significantly to the massive synthesis and accumulation of lipids, resulting in a concentration of 1.43 g/L and a respective content of 46.13% w/w, with a distinct impact on biomass, carbohydrates and proteins productivity. Finally, a beneficial contribution of red LED light to the protein synthesis is recognized and this can be conditionally amplified provided nitrogen sufficiency in the culture medium.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1698
Author(s):  
Yiting Zhang ◽  
Hao Dong ◽  
Shiwei Song ◽  
Wei Su ◽  
Houcheng Liu

In order to inhibit spindling growth and improve quality of cucumber seedlings under low irradiance, effects of supplemental light-emitting diodes (LED) light (SL) on morphological and physiological characteristics of cucumber seedlings at different growth stages under extremely low irradiance (ELI) were investigated. Supplementary monochromatic, dichromatic and trichromatic LED light on cucumber seedlings were conducted in experiment one, and supplements of combination ratios and intensity of blue and red LED light (RB) were conducted in experiment two. The morphological and physiological parameters of cucumber seedlings were promoted effectively by supplemental monochromatic red light or dichromatic containing red light (RB and RG) under ELI as early as one-leaf seedling stage, as demonstrated by suppressed length of hypocotyl and first internode, increased stem diameter and biomass, higher net photosynthetic rate (Pn) and soluble sugar content. Monochromatic or additional green light was not beneficial to cucumber seedlings under the ELI. The length of shoot and hypocotyl decreased, while stem diameter and leaf area increased as early as one-leaf seedling stage by RB SL. Root activities, root–shoot ratio, activities of catalase (CAT) and peroxidase (POD), as well as palisade–spongy ratio in the leaf of cucumber seedlings were promoted effectively by increasing blue light proportion (1R1B/1R2B). Increasing light intensity (50/75) enhanced soluble sugar accumulation in leaves. There were synergistic effects of RB ratio and light intensity on increasing stem diameter, leaf area, seedling index and decreasing hypocotyl cell area of the vertical section. In conclusion, 1R2B-75 may be the optimal SL to inhibit spindling growth of cucumber seedlings under ELI condition.


HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1399-1405
Author(s):  
Qinglu Ying ◽  
Yun Kong ◽  
Youbin Zheng

To investigate plant growth and quality responses to different light spectral combinations, cabbage (Brassica oleracea L. var. capitata f. rubra), kale (Brassica napus L. ‘Red Russian’), arugula (Eruca sativa L.), and mustard (Brassica juncea L. ‘Ruby steak’) microgreens were grown in a controlled environment using sole-source light with six different spectra: 1) FL: cool white fluorescent light; 2) BR: 15% blue and 85% red light-emitting diode (LED); 3) BRFRL: 15% blue, 85% red, and 15.5 µmol·m−2·s−1 far-red (FR) LED; 4) BRFRH: 15% blue, 85% red, and 155 µmol·m−2·s−1 FR LED; 5) BGLR: 9% blue, 6% green, and 85% red LED; and 6) BGHR: 5% blue, 10% green, and 85% red LED. For all the light treatments, the total photosynthetic photon flux density (PPFD) was set at ≈330 µmol·m−2·s−1 under a 17-hour photoperiod, and the air temperature was ≈21 °C with 73% relative humidity (RH). At harvest, BR vs. FL increased plant height for all the tested species except arugula, and enlarged cotyledon area for kale and arugula. Adding high-intensity FR light to blue and red light (i.e., BRFRH) further increased plant height for all species, and cotyledon area for mustard, but it did not affect the fresh or dry biomass for any species. Also, BRFRH vs. BR increased cotyledon greenness for green-leafed species (i.e., arugula, cabbage, and kale), and reduced cotyledon redness for red-leafed mustard. However, BGLR, BGHR, and BRFRL, compared with BR, did not affect plant height, cotyledon area, or fresh or dry biomass. These results suggest that the combination of 15% blue and 85% red LED light can potentially replace FL as the sole light source for indoor production of the tested microgreen species. Combining high-intensity FR light, rather than low-level (≤10%) green light, with blue and red light could be taken into consideration for the optimization of LED light spectral quality in microgreen production under environmental conditions similar to this experiment.


Sign in / Sign up

Export Citation Format

Share Document