scholarly journals Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature

Chemosensors ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 18 ◽  
Author(s):  
Domenico Pellegrino ◽  
Giorgia Franzò ◽  
Vincenzina Strano ◽  
Salvo Mirabella ◽  
Elena Bruno

Zinc Oxide (ZnO) nanowalls (NWLs) are interesting nanostructures for sensing application. In order to push towards the realization of room-temperature operating sensors, a detailed investigation of the synthesis effect on the electrical and optical properties is needed. This work focuses on the low-cost synthesis of ZnO NWLs by means of chemical bath deposition (growth time of 5, 60, and 120 minutes) followed by annealing in inert ambient (temperature of 100, 200, and 300 °C). The as-grown NWLs show a typical intertwined network of vertical sheets whose features (thickness and height) stabilize after 60 minutes growth. During thermal annealing, NWLs are converted into ZnO. The electric transport across the ZnO NWL network radically changes after annealing. A higher resistivity was observed for longer deposition times and for higher annealing temperatures, at which the photoluminescence spectra resemble those obtained for ZnO material. A longer deposition time allows for a better transformation to ZnO during the annealing, thanks to the presence of ZnO seeds just after the growth. These findings can have a significant role in promoting the realization of room-temperature operating sensors based on ZnO NWLs.

1990 ◽  
Vol 201 ◽  
Author(s):  
Honglie Shen ◽  
Genqing Yang ◽  
Zuyao Zhou ◽  
Guanqun Xia ◽  
Shichang Zou

AbstractDual implantations of Si+ and P+ into InP:Fe were performed both at 200°C and room temperature. Si+ ions were implanted by 150keV with doses ranging from 5×1013 /cm2 to 1×1015 /cm2, while P+ ions were implanted by 110keV. 160keV and 180keV with doses ranging from 1×l013 /cm2 to 1×1015 /cm2. Hall measurements and photoluminescence spectra were used to characterize the silicon nitride encapsulated annealed samples. It was found that enhanced activation can be obtained by Si+ and P+ dual implantations. The optimal condition for dual implantations is that the atomic distribution of implanted P overlaps that of implanted si with the same implant dose. For a dose of 5×l014 /cm2, the highest activation for dual implants is 70% while the activation for single implant is 40% after annealing at 750°C for 15 minutes. PL spectrum measurement was carried out at temperatures from 11K to 100K. A broad band at about 1.26eV was found in Si+ implanted samples, of which the intensity increased with increasing of the Si dose and decreased with increasing of the co-implant P+ dose. The temperature dependence of the broad band showed that it is a complex (Vp-Sip) related band. All these results indicate that silicon is an amphoteric species in InP.


1994 ◽  
Vol 340 ◽  
Author(s):  
E.L. Allen ◽  
F.X. Zach ◽  
K.M. Yu ◽  
E.D. Bourret

ABSTRACTWe report on the effectiveness of proximity caps and PECVD Si3N4 caps during annealing of implanted ZnSe films. OMVPE ZnSe films were grown using diisopropylselenide (DIPSe) and diethylzinc (DEZn) precursors, then ion-implanted with 1 × 1014 cm−2 N (33 keV) or Ne (45 keV) at room temperature and liquid nitrogen temperature, and rapid thermal annealed at temperatures between 200°C and 850°C. Rutherford backscattering spectrometry in the channeling orientation was used to investigate damage recovery, and photoluminescence spectroscopy was used to investigate crystal quality and the formation of point defects. Low temperature implants were found to have better luminescence properties than room temperature implants, and results show that annealing time and temperature may be more important than capping material in determining the optical properties. The effects of various caps, implant and annealing temperature are discussed in terms of their effect on the photoluminescence spectra.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shang-Chao Hung ◽  
Kin-Tak Lam ◽  
Cheng-Fu Yang ◽  
Yu-Jhen Liou

The (In, Ga, Zn)Ox(IGZO) thin films were deposited on glass substrates using cosputtering method in radio frequency magnetron sputtering system. Zn2Ga2O5(Ga2O3-2 ZnO, GZO) and In2O3ceramics were used as targets and dual guns were used to deposit the IGZO thin films. Deposition power of GZO target was 80 W and deposition power of pure In2O3target was changed from 70 W to 100 W, and the deposition time was 30 min. The effect of deposition power of In2O3target on the crystalline, surface, electrical, and optical properties of the IGZO thin films was investigated at room temperature in a pure Ar atmosphere. The cosputtered IGZO thin films showed a very smooth and featureless surface and an amorphous structure regardless of the deposition power of In2O3target due to the room temperature sputtering process. However, the cosputtered IGZO thin films exhibited transparent electrode properties because they had high transmittance ratio and low resistivity. The value variations in the optical band gap(Eg)values of the IGZO thin film were evaluated from the plots of(αhν)2=c(hν-Eg). We would also show that the deposition power of In2O3target would have a large effect on mobility andEgvalue of the IGZO thin films.


2004 ◽  
Vol 18 (22) ◽  
pp. 3063-3069 ◽  
Author(s):  
AL-MAMUN ◽  
A. B. M. O. ISLAM

In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu 2-x Se thin films on to glass substrate. Different thin films (0.2–0.6 μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that complexing the Cu 2+ ions with TEA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu 2-x Se .


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Bong Ju Lee ◽  
Jin Jeong

Al-doped CdO thin films were prepared by radio frequency magnetron sputtering at different deposition time and substrate temperature. X-ray diffraction showed that the changes in the intensities of the (200), (220), and (311) planes followed a similar trend with increase in deposition time. The surface of the thin film was examined by scanning electron microscopy. Grain sizes of Al-doped CdO thin films increased significantly with increasing deposition time. The film thicknesses were 0.09, 0.12, 0.20, and 0.225 μm for the deposition times of 1, 2, 3, and 4 h, respectively. The photoluminescence spectra of the Al-doped CdO thin films were measured at room temperature. The photoluminescence wavelength changed in the sequence, green, blue, green, and blue, with increasing deposition time, which indicates that blue light emitting films can be fabricated by adjusting the processing parameters.


1988 ◽  
Vol 100 ◽  
Author(s):  
Yunosuke Makita ◽  
Shigeru Shigetomi ◽  
Masahiko Mori ◽  
Nobukazu Ohnishi ◽  
Paul Phelan ◽  
...  

ABSTRACTC+ ion-implantation was carried out for extremely pure GaAs gown by moleplar Ieam epitaxy. The dose was very widely varied from 1×1015 to 1×1020 cm−3. Photoluminescence and Raman scattering measurements were performed at 2 K and room temperature, respectively, both as functions of dose and annealing temperature. The results revealed that for a dose less than 5×1017 cm−3, where the dominant damages are point defects, annealing at 200°C is sufficient to attain a damage-free lattice. When the dose is above that value, where the principal damage is a highly disordered lattice, annealing, at least above 550°C, is required. Photoluminescence spectra showed that the well-defined near-band-gap emission, [g-g], (exclusively inherent to acceptors), was a dominant emission in the above mentioned low dose region, but was strongly suppressed in the higher region. These observations indicate that ion-implanted C atoms in GaAs behave as amphoteric impurities when the dose exceeds a critical value, of around 5×1017 cm−3.


1998 ◽  
Vol 551 ◽  
Author(s):  
David S. Boyle ◽  
Paul O'brien

AbstractThere is considerable interest in the deposition of compound semiconductors by methods which involve relatively low capital expense and are technically undemanding on the experimentalist. One process to meet these criteria is Chemical Bath Deposition (CBD). Such processing methods are particularly appropriate for the production of devices for which large areas and low cost are essential, such as the BP Solar Ltd “Apollo” cells based on CdS:CdTe heterojunctions.The electrical and optical properties of these devices have been investigated with respect to impurity profiles of 16-O, 34-S, 35-Cl and 12-C in the CdTe and CdS:CdTe interface. Device characteristics (e.g. Voc and Rs) have been correlated with SIMS data. The distribution of the carbon contaminant appears to influence the chloride-promoted recrystallisation of CdTe. XPS analysis of CdS layers appears to indicate that the annealing process induces the formation of a chloride-rich surface layer, which may promote the n- to p- type thermal conversion of CdTe.


Sign in / Sign up

Export Citation Format

Share Document