scholarly journals Combining Chitosan and Vanillin to Retain Postharvest Quality of Tomato Fruit during Ambient Temperature Storage

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1222
Author(s):  
Zahir Shah Safari ◽  
Phebe Ding ◽  
Jaafar Juju Nakasha ◽  
Siti Fairuz Yusoff

Tomato, being a climacteric crop, has a relatively short postharvest life due to several factors such as postharvest diseases, accelerated ripening, and senescence that trigger losses in quantity and quality. Chemicals are widely used to control postharvest disease. Inaptly, it leads to detrimental effects on human health, environment and it is leads to increased disease resistance. Chitosan and vanillin could be an alternative to disease control, maintain fruit quality, and prolong shelf life. The aim of this research was to evaluate the potential of chitosan and vanillin coating on the tomato fruit’s physicochemical quality during storage at 26 ± 2 °C/60 ± 5% relative humidity. Chitosan and vanillin in aqueous solutions i.e., 0.5% chitosan + 10 mM vanillin, 1% chitosan + 10 mM vanillin, 1.5% chitosan + 10 mM vanillin, 0.5% chitosan + 15 mM vanillin, 1% chitosan + 15 mM vanillin, and 1.5% chitosan + 15 mM vanillin, respectively, were used as edible coating. The analysis was evaluated at 5-day intervals. The results revealed that 1.5% chitosan + 15 mM vanillin significantly reduced disease incidence and disease severity by 74.16% and 79%, respectively, as well delaying weight loss up to 90% and reducing changes in firmness, soluble solids concentration, and color score. These coatings also reduced the rate of respiration and the rate of ethylene production in comparison to the control and fruit treated with 0.5% chitosan + 10 mM vanillin. Furthermore, ascorbic acid content and the antioxidant properties of tomato were retained while shelf life was prolonged to 25 days without any negative effects on fruit postharvest quality.

2018 ◽  
Vol 16 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Rabeya Akter Sarmin ◽  
Shamim Ahmed Kamal Uddin Khan ◽  
Kanij Fatema ◽  
Sabiha Sultana

The study was carried out to minimize the postharvest loses and extend shelf life of mango fruitby maintaining physico-chemical properties. The variety selected for the study was “Amrapali”. Freshly harvested mango was treated with different concentrations (20% and 40%) of neem leaf and banana pulp extract alone or in combination. Untreated mango was considered as control. All treated and untreated mango was kept into paper cartons at room condition. The treated fruits showed significant differences in case of total soluble solids content, titratable acidity, vitamin C, disease incidence, disease severity and shelf life in comparison to control fruits. Among the treatments, T2 (neem leaf extract at 20%) and T5 (neem leaf extract 40% + banana pulp extract 40%) treatments showed longer shelf life (9.92 and 10.25 days, respectively), slower changes in color (score 2.77 and 2.93, respectively) and firmness (score 2.67 and 2.77, respectively); less disease severity (score 2.93 and 3.57, respectively), disease incidence (46.67% and 60.00%) and lower loss in weight (38.04% and 35.17%, respectively) at 9 DAT (Days after treatment). On the other hand, total soluble solid was highest in T3 (neem leaf extract 40%) treated fruitswith18.73% more Brix at 13 DAT in comparison to control and other treatments. The effectiveness of the treatment T5 (neem leaf extract 40% + banana pulp extract 40%) was meaningful which could be recommended for maintenance of postharvest quality of mango stored in ambient conditions. J. Bangladesh Agril. Univ. 16(3): 343–350, December 2018


Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 274-286
Author(s):  
Z.H. Safari ◽  
P. Ding ◽  
A.A. Sabir ◽  
A. Atif ◽  
A. Yaqubi ◽  
...  

A high intake of antioxidants in a daily diet could reduce the risk of several diseases, including certain cancers and heart disease. Tomato is one of the rich sources of antioxidant compounds. However, it has a relatively short postharvest life due to several factors such as postharvest diseases, accelerated ripening and senescence that hasten the losses in quantity and quality. Chitosan and vanillin could be an alternative to disease control, maintain the quality and prolong the shelf life of fruit. This research aimed to evaluate the potential of chitosan and vanillin coating on tomato antioxidant properties during storage at 26±2°C and 60±5% relative humidity. Chitosan and vanillin in aqueous solutions of 0.5% chitosan + 10 mM vanillin, 1% chitosan + 10 mM vanillin, 1.5% chitosan + 10 mM vanillin, 0.5% chitosan + 15 mM vanillin 1% chitosan + 15 mM vanillin and 1.5% chitosan + 15 mM vanillin, respectively, were used as edible coating on tomato fruit. The analysis was evaluated at a 5-day interval. The results revealed that 1.5% chitosan + 15 mM vanillin have significantly retained tomato's antioxidant properties and prolonged shelf life up to 25 days without any adverse effects on fruit quality. Thus, combining 1.5% chitosan and 15 mM vanillin is highly recommended as a tomato coating to maintain their quality, particularly in the absence of a refrigeration facility during marketing.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2173
Author(s):  
Elizabeth Pérez-Soto ◽  
Kenia Idalid Badillo-Solis ◽  
Antonio de Jesús Cenobio-Galindo ◽  
Juan Ocampo-López ◽  
Fanny Emma Ludeña-Urquizo ◽  
...  

This study was aimed at evaluating the effect of a nanoemulsion containing the bioactive compounds of orange essential oil and xoconostle (Opuntia oligacantha C.F. Först) on maintaining and improving the quality of the shelf life of tomato fruits. The nanoemulsion was applied as a coating on the whole fruits during physiological maturity; the treatments were thus: Control 1 without coating (C1); Control 2 with food-grade mineral oil coating (C2); and nanoemulsions that were diluted with mineral oil at 2.5% (DN2.5), 5% (DN5), 10% (DN10), and 20% (DN20). Further, the following parameters were determined for 21 days: the percentage weight loss, firmness, colour, pH, titratable acidity, total soluble solids, ascorbic acid content, total phenols, flavonoids, tannins, antioxidant activities DPPH and ABTS, and the histological evaluation of the pericarp of the fruits. Significant differences (p < 0.05) were observed during the treatments; DN10 and DN20 obtained the best weight loss results (3.27 ± 0.31% and 3.71 ± 0.30%, respectively) compared with C1 and C2. The DN5 and DN20 textures exhibited the highest firmness (11.56 ± 0.33 and 11.89 ± 1.04 N, respectively). The antioxidant activity (DPPH on Day 21) was higher in the DN20 treatment (48.19 ± 0.95%) compared with in C1 (39.52 ± 0.30%) and C2 (38.14 ± 0.76%). Histological evaluation revealed that the nanoemulsion coating allowed a slower maturation of the cells in the pericarp of the fruits. The nanoemulsion, as a coat, improved the quality and valuable life of the tomato regarding its physicochemical and antioxidant properties, thus availing an effective alternative for conserving this fruit.


Horticulturae ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 25 ◽  
Author(s):  
Savithri Nambeesan ◽  
John Doyle ◽  
Helaina Capps ◽  
Chip Starns ◽  
Harald Scherm

With the growing popularity of blueberries and the associated increase in blueberry imports and exports worldwide, delivering fruit with high quality, longer shelf-life, and meeting phytosanitary requirements has become increasingly important. The objective of this study was to determine the effects of electron beam irradiation using a new Electronic Cold-PasteurizationTM (ECPTM) technology on fruit quality, microbial safety, and postharvest disease development in two southern highbush blueberry cultivars, ‘Farthing’ and ‘Rebel’. Fruit packed in clamshells were subjected to four levels of ECPTM irradiation (0, 0.15, 0.5, and 1.0 kGy) and evaluated for fruit quality attributes, surface microbial load, and postharvest disease incidence during various storage times after treatment and cold storage. Overall, there was no effect of irradiation on visual fruit quality in either cultivar. Fruit firmness and skin toughness in ‘Farthing’ was reduced following irradiation at 1.0 kGy, but no such effect was observed in ‘Rebel’. Other fruit quality characteristics such as fruit weight, total soluble solids content, or titratable acidity were not affected. Irradiation at 1.0 kGy significantly reduced total aerobic bacteria and yeast on the fruit surface, and in the case of ‘Rebel’, also levels of total coliform bacteria. There was no significant effect of irradiation on postharvest disease incidence in these trials. Overall, data from this study suggests that an irradiation dose lower than 1.0 kGy using ECPTM can be useful for phytosanitary treatment in blueberry fruit while avoiding undesirable effects on fruit quality in a cultivar-dependent manner.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


Revista CERES ◽  
2013 ◽  
Vol 60 (6) ◽  
pp. 833-841 ◽  
Author(s):  
Danielle Fabíola Pereira Silva ◽  
Mariana Rodrigues Ribeiro ◽  
José Osmar da Costa e Silva ◽  
Rosana Gonçalves Pires Matias ◽  
Claudio Horst Bruckner

This study aimed to evaluate the postharvest behavior of peach cv. Aurora 1 harvested in the Zona da Mata region of Minas Gerais in two ripening stages and kept under different storage temperatures. Fruits on mid-ripe and fully ripe stages were stored at three temperatures: 5.6 ± 1.57 °C and 72.8 ± 3.8% RH; 10.4 ± 0.5 °C and 95.8 ± 5.5% RH; 21.04 ± 1.63 °C and 96.9 ± 2.6% RH up to 28 storage days (SD) . During storage, fruits stored at 21.04 ± 1.63 °C were evaluated every two days until 8 SD, and every four days for fruits stored at other temperatures. The harvest day was assigned as day zero. The variables evaluated were CO2 production, color of the pericarp and pulp, fresh mass loss, flesh firmness, total soluble solids, titratable acidity, contents of ascorbic acid and carotenoids. The fresh mass loss increased during storage, peaking at 5.6 °C. The reduction in ascorbic acid content was higher in fully ripe fruits at all temperatures. Mid-ripe fruits reached the end of the storage period with better quality. The temperature of 10.4 °C was the most efficient in keeping postharvest quality of peach cv. Aurora 1 harvested in the Zona da Mata region.


2011 ◽  
Vol 33 (4) ◽  
pp. 1229-1239 ◽  
Author(s):  
Ramilo Nogueira Martins ◽  
Ben-Hur Mattiuz ◽  
Leandra Oliveira Santos ◽  
Cristiane Maria Ascari Morgado ◽  
Claudia Fabrino Machado Mattiuz

'Aurora-1' peaches establishes an interesting alternative as a minimally processed product, due to its characteristics like flavor, color, smell, and also because of its handling resistance. However, it has a short shelf life after a fresh-cut due to enzymatic browning and stone cavity collapse. The main purpose of this research was to test the additive with antioxidant effect to prevent browning in minimally processed 'Aurora-1' peaches. The minimal processing consists of washing, sanitizing, peelings and fruit stone extraction. After that, longitudinal cuts were made to obtain eight segments per fruit. The slices were immersed into the following treatment solutions: control (immersion in 2% ascorbic acid); 2% ascorbic acid + 2% calcium chloride; 1% sodium isoascorbate; 1% citric acid; 1% L-cysteine hydrochloride. The products were placed into rigid polystyrene trays branded MEIWA M-54, covered with 14 µm PVC film (OmnifilmTM) and kept in cold storage at 3ºC ± 2ºC and 65% RH for twelve days, and evaluated each three days. Appraised variables were appearance, soluble solids, titratable acidity, soluble carbohydrates and reducing sugars, total and soluble pectin, ascorbic acid, and peroxidase and polyphenol oxidase enzyme activity. L-cysteine gave to the minimally processed products a shelf life of twelve days, limmited by off-flavor. The treatment with ascorbic acid was efficient to maintainthe ascorbic acid content, with a shelf-life of nine days, limited by enzymatic browning.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 80 ◽  
Author(s):  
Nadezhda Golubkina ◽  
Helene Kekina ◽  
Gianluca Caruso

One of the possible ways to challenge selenium (Se) and iodine (I) deficiency in human beings is the joint biofortification of plants with these elements. Though the relationship between Se and I is highly pronounced in mammals, little is known about their interactions in plants where Se and I are considered not to be essential. Peculiarities of Se and I assimilation by a natural Se accumulator, such as Brassica juncea L., cultivar Volnushka, were assessed upon joint and separate plant foliar supply with sodium selenate (50 mg Se L−1) and potassium iodide (100 mg I L−1), in two crop seasons (spring, summer). Conversely to the individual application of Se and I, their joint supply did not stimulate plant growth. Separate use of sodium selenate enhanced I accumulation by 2.64 times, while biofortification with I increased the Se content in plant leaves by 4.3 times; this phenomenon was also associated with significant increase of total soluble solids and ascorbic acid content in leaves. The joint supply of Se and I did not affect the mentioned parameters. Both joint and separate application of Se and I led to synergism between these elements in: inhibiting nitrate accumulation; stimulating flavonoids biosynthesis (2–2.3 times compared to control plants) as well as Al and B accumulation; decreasing Cd and Sr concentrations. Plant biofortification with I increased the content of Mn and decreased K and Li. The consumption of 100 g Brassica juncea leaves provided 100% of the adequate human requirement of Se and 15.5% of I.


2018 ◽  
Vol 12 (2) ◽  
pp. 416-424
Author(s):  
Marília Caixeta Sousa ◽  
Luan Fernando Ormond Sobreira Rodrigues ◽  
Mônica Bartira da Silva ◽  
Janaina Oliveira Cruz ◽  
Marla Silvia Diamante ◽  
...  

The tomato fruit is rich in antioxidant compounds and has great nutritional and economic importance, annually promoting research on the nutritional and productive characteristics. The present study aimed to evaluate whether foliar application of commercial products based on growth regulators [auxin, cytokinin and gibberellin (Ax+CK+GA)], micronutrients [cobalt and molybdenum (Mi)] and mixtures of macro and micronutrients [nitrogen, boron, copper, molybdenum and zinc (Ma+Mi)], isolated and in combination, increase productivity and improve the post-harvest quality of tomato fruits (Predador F1). The experiment design used randomized blocks, with seven treatments and four repetitions, which were (T1) control; (T2) Ax+CK+GA; (T3) Ma+Mi; (T4) Mi; (T5) Ax+CK+GA + (Ma+Mi); (T6) Ax+CK+GA + Mi; and (T7) Ax+CK+GA + Mi + (Ma+Mi). The variables production, precocity, soluble solids content (SS), titratable acidity (TA), ratio (SS/TA), pH, total soluble sugars, ascorbic acid and weight loss were evaluated. The Ax+CK+GA application, isolated or in combination with Ma+Mi, promoted the precocity, and the use of isolated Ax+CK+GA and Mi improved the tomato plant productivity. The growth regulators, macro and micronutrients, isolated or in combination, increased the ascorbic acid content in the fruits.


2018 ◽  
Vol 40 (1) ◽  
Author(s):  
Ivan Herman Fischer ◽  
Matheus Froes de Moraes ◽  
Maria Cecília de Arruda Palharini ◽  
Mirian de Souza Fileti ◽  
Juliana Cristina Sodário Cruz ◽  
...  

ABSTRACT Postharvest diseases constitute a serious problem for avocado commercialization. Thus, the present study aimed to evaluate the effect of conventional and alternative products in controlling diseases affecting ‘Hass’ avocados in the field and in the postharvest by carrying out physicochemical characterization of fruits subjected to postharvest treatments. In the field, besides the management adopted by the farmer, seven products were sprayed three times during fruiting for evaluation. Postharvest products were diluted in water or in oxidized polyethylene wax and shellac. Water treatments with potassium phosphite, Soil-Set®, chlorine dioxide, thyme essential oil, sodium bicarbonate, lemon grass essential oil and thiabendazole reduced the incidence of diseased fruits, and anthracnose, the main disease, was controlled with sodium bicarbonate, lemon grass essential oil and thiabendazole. Greater soluble solids content was found for control (water), chlorine dioxide, acibenzolar-S-methyl and thiabendazole. For the products that reduced anthracnose, there was no correlation between the disease and the physicochemical parameters, evidencing that the disease control is not associated with delayed ripening. For wax treatments, diseases were not controlled, and the fruits presented lower titratable acidity with thyme essential oil, sodium bicarbonate, control (wax), acibenzolar-S-methyl and lemon grass essential oil. Control and thyme essential oil were highlighted for maintaining the green coloration of the fruit skin for the shortest period. Under field conditions, azoxystrobin, thiabendazole, difenoconazole+azoxystrobin and acibenzolar-S-methyl+azoxystrobin reduced the occurrence of diseased fruits, while anthracnose control was only obtained with azoxystrobin.


Sign in / Sign up

Export Citation Format

Share Document