scholarly journals Vapor-Stripping and Encapsulating to Construct Particles with Time-Controlled Asymmetry and Anisotropy

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1248
Author(s):  
Ting-Ying Wu ◽  
Chendi Gao ◽  
Man-Chen Huang ◽  
Zhi Zhang ◽  
Peng-Yuan Wang ◽  
...  

An innovative chemical vapor sublimation and deposition (CVSD) process was shown to produce nanoscale anisotropic hybrid materials. Taking advantage of controlled thermodynamic properties and the mass transfer of molecules, this process allowed for water vapor sublimation from an iced template/substrate and stagewise vapor deposition of poly-p-xylylene onto the sublimating ice substrate. In this study, the use of sensitive soybean agglutinin (SBA) protein tubes was demonstrated as an example to prepare the anisotropic hybrid material based on the CVSD process. The rationale of a timing parameter, Δt, was controlled to program the sublimation of the SBA-ice templates and the deposition of poly-p-xylylene during the CVSD process. As a result of this control, a stripping stage occurred, during which SBA tubes were exposed on the particle surface, and a subsequent encapsulation stage enabled the transformation of the ice templates into a nanometer-sized anisotropic hybrid material of poly-p-xylylene as the matrix with encapsulated SBA tubes. The timing parameter Δt and the controlled stripping and encapsulating stages during CVSD represent a straightforward and intriguing mechanism stemming from physical chemistry fundamentals for the fabrication of hybrid materials from sensitive molecules and with predetermined sizes and asymmetrical shapes. A simulation analysis showed consistency with the experimental results and controllability of the timing mechanism with predictable particle sizes.

RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6221-6233
Author(s):  
G. Eliad Benitez-Medina ◽  
Raúl Flores ◽  
Luis Vargas ◽  
Fernando Cuenú ◽  
Pankaj Sharma ◽  
...  

Ruthenium–silica hybrid materials were synthesized. The process was tracked by FT-IR, DRS-UV-Vis, DFT and deconvolution analyses, finding experimental–theoretical correlation.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Jesús-María García-Martínez ◽  
Emilia P. Collar

According to the IUPAC (International Union of Pure and Applied Chemistry), a hybrid material is that composed of an intimate mixture of inorganic components, organic components, or both types of components which usually interpenetrate on scales of less than 1 μm [...]


2017 ◽  
Vol 8 ◽  
pp. 2669-2679 ◽  
Author(s):  
Egor V Lobiak ◽  
Lyubov G Bulusheva ◽  
Ekaterina O Fedorovskaya ◽  
Yury V Shubin ◽  
Pavel E Plyusnin ◽  
...  

Novel nitrogen-doped carbon hybrid materials consisting of multiwalled nanotubes and porous graphitic layers have been produced by chemical vapor deposition over magnesium-oxide-supported metal catalysts. CN x nanotubes were grown on Co/Mo, Ni/Mo, or Fe/Mo alloy nanoparticles, and MgO grains served as a template for the porous carbon. The simultaneous formation of morphologically different carbon structures was due to the slow activation of catalysts for the nanotube growth in a carbon-containing gas environment. An analysis of the obtained products by means of transmission electron microscopy, thermogravimetry and X-ray photoelectron spectroscopy methods revealed that the catalyst's composition influences the nanotube/porous carbon ratio and concentration of incorporated nitrogen. The hybrid materials were tested as electrodes in a 1M H2SO4 electrolyte and the best performance was found for a nitrogen-enriched material produced using the Fe/Mo catalyst. From the electrochemical impedance spectroscopy data, it was concluded that the nitrogen doping reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell.


2005 ◽  
Vol 287 ◽  
pp. 200-205 ◽  
Author(s):  
Ji Yeon Park ◽  
S.M. Kang ◽  
Weon Ju Kim ◽  
Woo Seog Ryu

To obtain a dense SiCf/SiC composite by the chemical vapor infiltration (CVI) process, whisker growing before matrix filling was applied, which is called the whisker growing assisted CVI process. The whisker growing and matrix filling processes were carried out using MTS (CH3SiCl3) and H2 as source and diluent gases, respectively. Tyranno-SATM was used as a reinforced substrate. Characterizations of SiC whisker grown during the in situ whisker growing process have been investigated. The weight gain rates with the matrix filling time and the density of composites was measured. The flexural strength with the thickness of the pyrolytic carbon (PyC) interlayers has been evaluated. b-SiC whiskers with many stacking faults were grown well in the Tyranno SATM fabrics. Tyranno-SA/SiC composite with a PyC interlayer thickness of 150 nm had a flexural strength of 610 MPa and the density of 2.71 g/cm3.


2020 ◽  
pp. 46-52
Author(s):  
E.N. Kablov ◽  
V.V. Antipov ◽  
R.I. Girsh ◽  
N.YU. Serebrennikova ◽  
A.N. Konovalov

The developments in the field of layered aluminum-fiberglass using sheets of aluminum-lithium alloys and layers of fiberglass are presented. A set of basic indicators is considered depending on the stacking of layers in the structures of aluminum-fiberglass СИАЛ. The tests show the advantages of structures using laminated hybrid materials over structures made of traditional aluminum alloys. Keywords: laminated hybrid material, aluminum-fiberglass СИАЛ, GLARE, aluminum-lithium alloy, structurally similar specimen. [email protected]


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1164-1178 ◽  
Author(s):  
Hasan J. Khan ◽  
Maša Prodanovic ◽  
David A. DiCarlo

Summary A formation-damage experimental study is conducted on synthetic homogeneous and vuggy cores. Glass beads of 1.0 mm are sintered to form a uniform core with a porosity of 42%, and finer-sized glass beads (25 and 100 µm) are used as the infiltrates. Glass beads are used as the matrix and infiltrate to reduce surface forces, and the flow is gravity dominated. Dissolvable inclusions are added during the sintering process to create vugs in the core. The pore-size to vug-size ratio is 1:100. The injected-particle sizes are chosen such that straining is the dominant trapping mechanism during the flow experiment. Infiltrate particles are injected at different flow configurations, and the resultant porosity, permeability, and effluent volume are measured. The results can be summarized as follows: Vugs get up to 32% smaller caused by the flow for the infiltrate, while the maximum change in the porosity is observed at the bottom end of the core, vug shape changes to a smoother and rounded surface, and particles go deeper (8 mm more) into the formation when vugs are present, causing damage deeper inside the formation.


2020 ◽  
Vol 11 ◽  
pp. 1419-1431
Author(s):  
Sebastian Tigges ◽  
Nicolas Wöhrl ◽  
Ivan Radev ◽  
Ulrich Hagemann ◽  
Markus Heidelmann ◽  
...  

Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal acetylacetonate precursors.


Author(s):  
Sterling Voss ◽  
Bret Mecham ◽  
Lucy Bowden ◽  
Jacquelyn Monroe ◽  
Anton E. Bowden ◽  
...  

Abstract Physically altering the micro-topography of a surface can dramatically affect its capacity to support or prevent biofilm growth. Growing carbon-infiltrated carbon nanotubes on biomedical materials is one such approach which has proven effective. Unfortunately, the high temperature and carbon-rich gas exposure required for this procedure has proven to have deleterious effects. This paper proposes a kinetic model to explain the rusting phenomenon observed on 316L stainless steel substrates which have undergone the chemical vapor deposition process to grow carbon-infiltrated carbon nanotubes. The model is derived from Fick’s Second Law, and predicts the growth of chromium carbide as a function of temperature and time. Chromium carbide formation is shown to be the mechanism of corrosion, as chromium atoms are leeched from the the matrix, preventing the formation of a passivating chromium oxide layer in place of problematic iron oxide (rust) formation. The model is validated using experimental methods, which involve immersion in bacteria culture, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX).


2002 ◽  
Vol 749 ◽  
Author(s):  
Masato Osamura ◽  
Hidetaka Ishihara ◽  
Zhengxin Liu ◽  
Hisao Tanoue ◽  
Shirou. Sakuragi ◽  
...  

ABSTRACTPlate-like β-FeSi2 bulk crystals with size of 10×10 mm2 and thickness of 1 mm were fabricated by annealing CVT (chemical vapor transport)-grown plate-like α-Fe2Si5 at 800°C in Ar atmosphere. Before annealing, α-Fe2Si5 crystals were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM) to be single crystals with flat surfaces. XRD measurements of β-FeSi2 crystals subjected to annealing showed that they had a po lycrystalline structure. The mean Fe/Si co mposit ion rat io of β-FeSi2 crystal measured by energy dispersive x-ray spectroscopy (EDX) was 31/69 and it was the same as that of α-Fe2Si5 bulk crystal before annealing. SEM, Raman scattering and electron probe micro-analysis (EPMA) measurements identified that there existed small Si precipitates mixed in the matrix of β-FeSi2 crystals. At annealing temperature of 800°C, the plate-like β-FeSi2 bulk was obtained even the annealing duration time was as short as 5 hours.


2015 ◽  
Vol 3 (2) ◽  
pp. 239-242 ◽  
Author(s):  
Sung Jin Park ◽  
Hyeon Mo Cho ◽  
Myong Euy Lee ◽  
Miyoung Kim ◽  
Kwenwoo Han ◽  
...  

Silicon thin films that fulfil the needs of current semiconductor lithography were prepared from a new class of polycyclosilane–polysiloxane hybrid materials.


Sign in / Sign up

Export Citation Format

Share Document