scholarly journals Influence of Low Energy Density Laser Re-Melting on the Properties of Cold Sprayed FeCoCrMoBCY Amorphous Alloy Coatings

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 695
Author(s):  
Chao Han ◽  
Li Ma ◽  
Xudong Sui ◽  
Bojiang Ma ◽  
Guosheng Huang

Fe-based amorphous alloys (FAA) have excellent anti-corrosion and anti-abrasive comprehensive performances. However, sprayed thin FAA coatings with high porosity cannot provide efficient protection, or even accelerate the corrosion rate of the substrate due to galvanic corrosion. Laser re-melting densifying is usually used to improve the anti-corrosion performance of sprayed coatings. There are two disadvantages of the common laser re-melting method, including crystallization and residual stress. In the present paper, a low density energy laser re-melting method was used to improve the performance of cold spraying (CS) FeCoCrMoBCY FAA coating on 40Cr substrate. The results show that the CS FAA coatings were crystallized partially during the melting process. The hardness of the coating is improved at the melting zone after laser re-melting, which improves the anti-abrasive performance. Potentiodynamic test results show that laser re-melting can decrease the corrosion rate, but the salt spray test indicates that low energy density re-melting cannot eliminate penetrated diffusion passage. Further optimization should be conducted to improve the anticorrosion performance for this method.

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
A. Dhanapal ◽  
S. Rajendra Boopathy ◽  
V. Balasubramanian ◽  
K. Chidambaram ◽  
A. R. Thoheer Zaman

Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW) processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosion test using design of experiments. The corrosion morphology and the pit morphology were analyzed by optical microscopy, and the corrosion products were examined using scanning electron microscope and X-ray diffraction analysis. From this research work, it is found that, in both corrosion tests, the corrosion rate decreases with the increase in pH value, the decrease in chloride ion concentration, and a higher corrosion time. The results show the usage of the magnesium alloy for best environments and suitable applications from the aforementioned conditions. Also, it is found that AZ61A magnesium alloy welds possess low-corrosion rate and higher-corrosion resistance in the galvanic corrosion test than in the salt spray corrosion test.


Author(s):  
Peter Rez

Transportation efficiency can be measured in terms of the energy needed to move a person or a tonne of freight over a given distance. For passengers, journey time is important, so an equally useful measure is the product of the energy used and the time taken for the journey. Transportation requires storage of energy. Rechargeable systems such as batteries have very low energy densities as compared to fossil fuels. The highest energy densities come from nuclear fuels, although, because of shielding requirements, these are not practical for most forms of transportation. Liquid hydrocarbons represent a nice compromise between high energy density and ease of use.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen-Han Kao ◽  
Johannes Knolle ◽  
Gábor B. Halász ◽  
Roderich Moessner ◽  
Natalia B. Perkins

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 744
Author(s):  
Ameeq Farooq ◽  
Umer Masood Chaudry ◽  
Ahsan Saleem ◽  
Kashif Mairaj Deen ◽  
Kotiba Hamad ◽  
...  

To protect steel structures, zinc coatings are mostly used as a sacrificial barrier. This research aims to estimate the dissolution tendency of the electroplated and zinc-rich cold galvanized (ZRCG) coatings of a controlled thickness (35 ± 1 μm) applied via brush and dip coating methods on the mild steel. To assess the corrosion behavior of these coated samples in 3.5% NaCl and 10% NaCl containing soil solutions, open circuit potential (OCP), cyclic polarization (CP), and electrochemical impedance spectroscopy (EIS) tests were performed. The more negative OCP and appreciably large corrosion rate of the electroplated and ZRCG coated samples in 3.5% NaCl solution highlighted the preferential dissolution of Zn coatings. However, in saline soil solution, the relatively positive OCP (>−850 mV vs. Cu/CuSO4) and lower corrosion rate of the electroplated and ZRCG coatings compared to the uncoated steel sample indicated their incapacity to protect the steel substrate. The CP scans of the zinc electroplated samples showed a positive hysteresis loop after 24 h of exposure in 3.5% NaCl and saline soil solutions attributing to the localized dissolution of the coating. Similarly, the appreciable decrease in the charge transfer resistance of the electroplated samples after 24 h of exposure corresponded to their accelerated dissolution. Compared to the localized dissolution of the electroplated and brush-coated samples, the dip-coated ZRCG samples exhibited uniform dissolution during the extended exposure (500 h) salt spray test.


Author(s):  
Peiyao Zhao ◽  
Lingling Chen ◽  
Longtu Li ◽  
Xiaohui Wang

Dielectric capacitor has received growing interest for advanced electrical and electronic systems. However, the low energy density and poor thermal stability at high temperature severely hinder its practical applications. Herein,...


2019 ◽  
Vol 25 (9) ◽  
pp. 1506-1515 ◽  
Author(s):  
Pei Wei ◽  
Zhengying Wei ◽  
Zhne Chen ◽  
Jun Du ◽  
Yuyang He ◽  
...  

Purpose This paper aims to study numerically the influence of the applied laser energy density and the porosity of the powder bed on the thermal behavior of the melt and the resultant instability of the liquid track. Design/methodology/approach A three-dimensional model was proposed to predict local powder melting process. The model accounts for heat transfer, melting, solidification and evaporation in granular system at particle scale. The proposed model has been proved to be a good approach for the simulation of the laser melting process. Findings The results shows that the applied laser energy density has a significantly influence on the shape of the molten pool and the local thermal properties. The relative low or high input laser energy density has the main negative impact on the stability of the scan track. Decreasing the porosity of the powder bed lowers the heat dissipation in the downward direction, resulting in a shallower melt pool, whereas pushing results in improvement in liquid track quality. Originality/value The randomly packed powder bed is calculated using discrete element method. The powder particle information including particle size distribution and packing density is taken into account in placement of individual particles. The effect of volumetric shrinkage and evaporation is considered in numerical model.


10.30544/340 ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 123-132
Author(s):  
Bore V. Jegdic ◽  
Bojana M. Radojković ◽  
Biljana M. Bobić ◽  
Marija M. Krmar ◽  
Slavica Ristić

Corrosion behavior of metalized layers, obtained by Plasma Transferred Arc (PTA) process and by High-Velocity Oxygen Fuel (HVOF) process with the purpose to improve the wear resistance of vital parts of ventilation mill in a thermal power plant, has been tested. The test is performed using three electrochemical techniques, in a solution containing chloride and sulfate ions. It is shown that the steel surface (base metal) dissolves uniformly, without pitting or other forms of local dissolution. Morphology of metalized layers surface indicates that dissolution is non-uniform, but it still can be considered as general corrosion. The corrosion rate of base metal and metalized layer obtained by PTA process is rather low, while the corrosion rate of the metalized layer obtained by HVOF process is much higher. Also, the difference in corrosion potentials between the base metal and the HVOF layer is pretty high but slightly less than maximum allowed difference (prescribed by the standard), to avoid excessive galvanic corrosion. The values of corrosion rate obtained by different electrochemical techniques are in excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document