scholarly journals Study on Performance Optimization of Composite Natural Asphalt Modified Gussasphalt Mix

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Huadong Sun ◽  
Peng Jiang ◽  
Yongling Ding ◽  
Laixue Pang ◽  
Yinbin Liu ◽  
...  

In order to systematically study and develop a type of gussasphalt (GA) mix with superior performance, namely GA-10; the effect of Qingchuan Rock Asphalt (QRA) and Trinidad Lake asphalt (TLA) on the GA-10 mix was assessed based on the study of composite natural asphalt modified gussasphalt (CNAMGA) binder. Various analytical tests were used to evaluate the engineering properties, thermal stability and microstructure of CNAMGA mix. The results indicate that the stability of QRA modified binder and TLA modified binder in the normal temperature range and the high temperature range have been improved, and the temperature susceptibility is reduced. The optimal asphalt–aggregate ratio of the GA mix is determined to be 9.7%, which has good high-temperature stability, low-temperature crack resistance and construction workability. The QRA mix has better high-temperature stability than the TLA mix, whereas the low-temperature cracking resistance of the TLA mix is better than that of the QRA mix. The two kinds of GA-10 mix have similar construction workability. The fact that the abundant fine aggregates wrapped in binder fill the coarse aggregates surface contributes to the better adhesion of the GA asphalt concrete. The distribution of aggregate and binder is relatively uniform with fewer pores, and the overall proportion of the binder is greater than that of aggregate.

2011 ◽  
Vol 255-260 ◽  
pp. 3166-3170
Author(s):  
Li Ming Wang ◽  
Yi Qiu Tan ◽  
Zhen Wu Shi

Additives on low temperature compaction and performances of compacted mixtures, the author devised low temperature environment compaction test, and then, comparison tests of volume parameters, high temperature stability, low temperature crack resistance and water sensitivity were conducted. Tests results showed that the wax additives and the surface-active additive can significantly contribute to mixtures low-temperature compactibility. The wax additive helps to improve high temperature stability obviously, and has no significant contribution to low temperature crack resistance and water sensitivity. The surface-active additive directly reduces water sensitivity, the wax additive indirectly plays the role of reducing water sensitivity by increasing the density of mixture, and the foam additive has no obvious effect on the water sensitivity.


2013 ◽  
Vol 734-737 ◽  
pp. 2287-2291 ◽  
Author(s):  
De Dong Guo

Fiber asphalt concrete has been more and more widely used in highway construction. For analyzing high and low temperature performance of fiber asphalt mixture, rheological properties of fiber asphalt mortar were studied through indoor test. Impact of Rheological properties of the fiber asphalt mortar on high temperature and low temperature properties of asphalt mixture was analyzed. Results showed that the larger fiber content was, the better performance of asphalt mixture's high temperature stability, fiber asphalt mortar rut factor and rutting tests results of asphalt mixture were linear correlation, reflecting the high temperature performance of asphalt mixture; With the increase of fiber content, variation of stiffness modulus, creep rate indicators and mixture low temperature performance was consistent, and rheological properties of fiber asphalt mortar could characterize low temperature performance of asphalt mixture.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2014 ◽  
Vol 599 ◽  
pp. 110-114 ◽  
Author(s):  
Yan Hua Wang ◽  
Kuang Yi Liu ◽  
Hai Xia Zhang ◽  
Shan Li

Anti-rut agent, named RPS-3000,was added into AC-25 asphalt mixture and its effects on high temperature stability, low temperature cracking resistance, water damage resistance and fatigue life were investigated in this paper. Results showed that the high temperature stability and low temperature crack resistance of the asphalt mixture improved significantly, the water damage stability increase slightly due to the introduction of anti-rut agents. Besides, the result of fatigue life test presented that excess amount of anti-rut agent may lead a deterioration of fatigue life. Keywords: Anti-rut agent; High temperature stability; Asphalt mixture


2012 ◽  
Vol 557-559 ◽  
pp. 329-333
Author(s):  
Zhong Run Zheng ◽  
Chao Zhao ◽  
Yi Feng Zhao ◽  
Pei Song

This paper introduces an asphalt mixture that mixed with different admixtures, rutting resistance agent and lignin fiber, at the same time. Rutting test and freeze-thaw splitting test are used to analyze rutting resistance on the high temperature and low temperature cracking of the asphalt mixture. The experiments with different mixes material composition are conducted to analysis various properties of the two admixtures on the mixture, especially the high temperature stability, low temperature crack resistance and the law of improvement effect. In addition, the experiments also determine the optimal asphalt content of different type of mixtures. The results showed that the single-doped KTL rutting resistance or lignin fibers have some improvement in water temperature performance of asphalt mixture, stability improvement of double-doped admixture asphalt mixture is better than the single-doped asphalt mixture, such as KTL rutting resistance agents and lignin fibers


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Liangchen Qu ◽  
Yingli Gao ◽  
Hui Yao ◽  
Dandan Cao ◽  
Ganpeng Pei ◽  
...  

This study presented the preparation and performance of a kind of high viscosity and elastic recovery asphalt (HVERA) by using some modifiers. The performance of styrene-butadiene-styrene (SBS), rock asphalt (RA), crumb rubber (CR), and stabilizing agent (SA) for different modifiers was investigated by conventional binder test. Effects of modifiers on the high- and low-temperature properties of HVERA were investigated. The dynamic viscosity (DV) test, dynamic shear rheometer (DSR), and bending beam rheometer (BBR) analysis indicated that the high- and low-temperature rheological properties of asphalt were improved attribute to the addition of mixture of modifiers. Meanwhile, the short-term aging and long-term aging were simulated by rolling thin film oven (RTFO) and pressure aging vessel (PAV) tests. Furthermore, the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) measurements were conducted for obtaining the mechanism and microstructure distribution of the modified asphalt binders. From the test results in this study, it was evident that the addition of SBS, RA, CR, and SA into a neat asphalt binder could both significantly improve the viscosity of the binder at high temperature and lower the creep stiffness at low temperature, which was beneficial to better both high-temperature stability and low-temperature cracking resistance of asphalt pavements. It was proved that the high temperature grade of HVERA could be increased by increasing of RA and a proper percentage of modifiers could be improved by the low temperature grade of HVERA.


2021 ◽  
Vol 891 ◽  
pp. 211-217
Author(s):  
Huan He

This paper studied the aging effect of the rolling thin film oven test (RTFOT) , pressurized aging vessel (PAV) and natural ultraviolet radiation aging method on AH-90 and PG70-28 asphalts. penetration degree , penetration degree index,softening point and ductility tests were used to evaluate the high temperature stability, low temperature split and temperature susceptibility of the two aged asphalts , it is pointed that the aging damaged the low temperature performance of the asphalts, improved the high temperature stability and the temperature susceptibility of the asphalts. Compared with the AH-90 asphalt, PG70-28 modified asphalt has better aging performance. The antiaging property and temperature susceptibility of two asphalts after ultraviolet photooxidation and thermal oxidation , were investigated by testing their viscosity index , antiaging index. which indicated that the viscosity index is correlative nearly with the penetration degree index and the influence of 10.5 kJ·cm-2 ultraviolet photooxidation on asphalt performance is more serious than PAV thermal oxidation. The results indicate that ultraviolet photooxidation research on asphalt is necessary in the intensive ultraviolet radiation region of Neimeng.


2014 ◽  
Vol 505-506 ◽  
pp. 192-199
Author(s):  
Ye Hu ◽  
Jian Hui Yu ◽  
Shong Zhang ◽  
Jian Guang Xie

Based on the fiber Bragg grating sensing principle, and according to the characteristics of asphalt pavements, two types of FBG sensors are designed. One type is rigid sensor packaged by steel casing which labeled as R-type, and the other one is flexible sensor packaged by rubber which labeled as F-type. Through the tests of sensing performance, high-temperature stability performance and low-temperature stability performance, a comprehensive analysis of the long-term service performance is obtained. Analysis show that both rigid and flexible packaing have sensitizing effect while flexible packaging is better. Both types of sensors have good high temperature stability and low temperature stability, while R-tpe is better than F-type.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1481 ◽  
Author(s):  
Xiaoliang Zhang ◽  
Ben Zhang ◽  
Huaxin Chen ◽  
Dongliang Kuang

Road construction consumes great amounts of high-grade natural resources. Using low-grade natural rocks or some solid wastes as substitute materials is a hot topic. Considering this, the feasibility of using low-grade granite aggregate, solid waste-based filler (desulphurization gypsum residues, DGR) and binder (waste tire rubber modified asphalt, RMA) simultaneously in asphalt mixtures has been fully investigated in this research. The commonly used base asphalt and limestone powder (LP) filler were control groups. Material characteristics of raw materials mainly including micro-morphology, functional group, mineral phase, chemical composition and thermal stability were first evaluated in order to recognize them. Four asphalt mixtures (two asphalt binder and two filler) were then designed by standard Superpave method. Finally, a detailed investigation into the pavement performance of asphalt mixtures was carried out. The moisture damage resistance and low-temperature crack resistance were detected by the changing rules of stability, strength and fracture energy, and the high-temperature stability and fatigue performance were determined by wheel tracking test and indirect tensile (IDT) fatigue test, respectively. Results suggested that RMA and DGR both showed positive effects on the low-temperature crack resistance and fatigue property of the granite asphalt mixture. DGR also strengthened moisture stability. The contribution of RMA on high-temperature deformation resistance of the granite asphalt mixture was compelling. It can offset the insufficiency in high-temperature stability made by DGR. A conclusion can be made that asphalt mixture prepared with granite, DGR and RMA possesses satisfactory pavement performances.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoge Tian ◽  
Ren Zhang ◽  
Zhen Yang ◽  
Yantian Chu ◽  
Yichao Xu ◽  
...  

In order to improve the high-temperature performance, antiaging performance, and storage stability of rubber asphalt, nano-organic montmorillonite (NOMMT) was mixed with rubber asphalt. Macroscopic influences of NOMMT on rubber asphalt were measured through penetration, softening point, ductility, rotational viscosity tests, dynamic shear rheology test, and bending beam rheology test at low temperature and were conducted on rubber asphalt with different contents of NOMMT. Then, the microscopic mechanism of NOMMT on the microscopic performance of rubber asphalt was studied through using scanning electron microscopy (SEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC). The results showed that the rubber particles were smoother, uniform, and dispersed after NOMMT was introduced, and the compatibility between NOMMT and crumbed rubber powder was good. Some stable structures were formed in the composite modified asphalt. The disappearance of alcohol phenol and the increase in related groups such as alkane, benzene, and hydrocarbon indicated that chemical reaction occurred between NOMMT and rubber asphalt, resulting in the changes of the performance of the composite modified system, so that high-temperature stability, antiaging properties, and storage stability were improved but its low-temperature performance was decreased.


Sign in / Sign up

Export Citation Format

Share Document